

# **COMPUTER SCIENCE**

Department Handbook 2021-2022

#### **Table of Contents**

| DEPARTMENT AIMS AND VISION                   | 4         |
|----------------------------------------------|-----------|
| <u>INTENT</u>                                | 5         |
| IMPLEMENTATION                               | 5         |
| DEPARTMENT ROLES                             | 6         |
| DEPARTMENT EXPECTATIONS - THE BASICS         | 7         |
| Lesson routines                              |           |
| MARKING                                      |           |
| CURRICULUM DESIGN                            | 8         |
| COHERENCE AND FLEXIBILITY                    |           |
| KNOWLEDGE ORGANISATION                       |           |
| CORE PRINCIPLES                              |           |
| INCLUSIVE AND AMBITIOUS                      |           |
| RESEARCH-INFORMED                            | 9         |
| SUBJECT SPECIFIC PEDAGOGY AND CPD            | 9         |
| LEAD WITH CONCEPTS                           | -         |
| STRUCTURE LESSONS                            | -         |
| Маке солстете                                | -         |
| UNPLUG, UNPACK, REPACK                       |           |
| WORK TOGETHER1                               | .0        |
| READ AND EXPLORE CODE FIRST                  | .0        |
| CREATE PROJECTS                              | .0        |
| MODEL EVERYTHING                             | 0         |
| GET HANDS-ON                                 | .0        |
| CHALLENGE MISCONCEPTIONS                     | .0        |
| ADD VARIETY                                  | .0        |
| FOSTER PROGRAM COMPREHENSION                 | .0        |
| STRUCTURE OF KS3 UNITS OF WORK AND SUMMARIES | .1        |
| KS3 UNITS ASSESSMENT TAXONOMY                | .2        |
| GCSE CURRICULUM AND ASSESSMENT TAXONOMY      | .3        |
| PROGRESSION MODEL                            | <u>:1</u> |
| ASSESSMENT POLICY                            | <u>;2</u> |
| FORMATIVE ASSESSMENT                         | :2        |
| SUMMATIVE ASSESSMENT                         | 2         |
| MULTIPLE CHOICE QUIZ (MCQ)                   | 2         |
| RUBRICS                                      | 3         |
| STUDENT ACCOUNTABILITY                       |           |

| PROGRESSION PATHWAYS KS3 |         |
|--------------------------|---------|
| PROGRESSION PATHWAYS KS4 |         |
|                          |         |
| HOMEWORK POLICY          | <u></u> |
| Years 7, 8 and 9         | 36      |
| YEARS 7 & 9              | 36      |
| YEAR 8                   |         |
| FOR THE LOVE OF          |         |
| FOR THE LOVE OF          |         |
| YEAR 10 AND 11           |         |
| PERIOD 6 EXPECTATIONS    |         |
| RED LINES                |         |
| VOCABULARY GLOSSARY      |         |
| CORE                     |         |
| PROGRAMMING              |         |
|                          |         |

## Department Aims and Vision working together with passion and panache

Our aims are to work effectively as a highly skilled team of staff to

- Demonstrate an **ambitious vision** for the school and **high expectations** for what every student and member of staff can achieve, expecting excellence in every aspect of our work.
- Offer a rich, relevant, broad and balanced curriculum within and beyond the formal timetable, including participation in local, national and international events, competitions and visits which motivate and inspire a thirst for knowledge
- Constantly drive towards securing the highest standards of both achievement and progress for all students – meeting FFT 50 targets for all in the first instance.
  - Enable all students to have command and control through a mastery curriculum and the PCS Great Teaching & Learning model of pedagogy
- ✓ Build the capacity of team members so that all colleagues are:
  - supported and challenged
  - □ demonstrate the highest standards of professional skill/aptitude
  - □ proactively contribute to the drive for continuous improvement.
- Ensure that planning for improvement and innovation is based on rigorous data analysis, quality assurance and self-evaluation.

## Intent

Computing sits at the cornerstone of the modern world, affecting the way we communicate and work as it encompasses Digital Literacy, IT and Computer Science. Our curriculum offers a pathway for our students to explore the use of applications and the creation of software to solve complex real-world problems using algorithmic thinking, which consists of abstraction, decomposition, and pattern recognition. Our focus is to develop confident independent learners who can apply thinking and reasoning skills developed in computing and other subjects across the curriculum.

We aim to develop competent students who can express themselves using a variety of applications and problem-solving techniques which allows them to tackle challenging problems related to business and the communication of data. To achieve this, students must master several applications including the ability to decompose a problem into smaller more manageable tasks using abstraction to clarify the important details contained in a specification brief. To master these skills students are exposed to familiar and unfamiliar contexts which require the application of critical thinking skills to simplify computable problems. Due to the crossover between Maths and Computer Science students will be encouraged to make use of mathematical formulae when they develop software solutions as well as the use of algebra to develop and test programming concepts.

## Implementation

Please refer to the relevant sections for KS3 and GCSE curriculum coverage and explanation

Curriculum Design KS3

**GCSE Computer Science**.

# **Department Roles**

| Team<br>Member      | Role                           | Stage of career/<br>TLR/ UPR |                  | Developmental responsibilities                                                                                                                                                                                                                                                                                                                                              |   | Maintenance<br>responsibilities                                                                                  | Training needs                                               |
|---------------------|--------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Anthony<br>Crowther | Head of Computer<br>Science    | HOD /UPR                     |                  | Overview of curriculum,<br>assessment, teaching and learning,<br>monitoring impact of revised<br>curriculum<br>Quality assurance<br>Data analysis overview for KS3 and<br>KS4<br>Leading dept. Meetings<br>Performance management<br>Dept. vision and priorities<br>Overall accountability for dept.<br>outcomes<br>Mentoring (PGCE)<br>Coaching (NQT +1)<br>SEN Ambassador | 0 | Overseeing<br>department<br>Monitoring and<br>refining online<br>space<br>Oversight of<br>assessment<br>trackers | Leading<br>improvement in<br>Computer Science<br>(examiner?) |
| Charles Wray        | Teacher of Computer<br>Science | Teacher / MPS                | 0<br>0<br>0<br>0 | Reviewing and developing aspects<br>of the curriculum (see plan below)<br>Leading Robotics club and other<br>extra-curricular activities<br>Production of Dept. MCQ's (half<br>termly 3 per year group – Add<br>duplicate links to tracker)<br>Creation of draft 'for the love of'<br>home learning<br>SMSC link                                                            | 0 | Tracking of<br>MCQ's<br>National Centre<br>for Computing<br>link                                                 | Effective assessment<br>Exam marking                         |

# **Department expectations - The Basics**

## Lesson routines

- Levelled and progressive objectives x2 / inspiring rather than demotivating levelling
- Use of ruler/pencil for drawing, pen for writing
- Presentation via MS Office and OneNote through MS Teams:
  - o Use of screenshots to present programming activities
  - o Writing to explain must use structured English with full sentences and accurate grammar
  - o Electronic drawings are accepted form of submission for certain activities
- Key words explored / explained in the section provided in OneNote
- Resources attractive, quality, legible

#### Marking

- Expectation is that all practise work is self/peer marked but that all GCSE/multi-step problems are marked by the teacher and feedback given on:
  - a) correcting misconceptions
  - b) marking for mastery
  - c) specifying activity to consolidate/extend for green pen/text.
- Green penning/text evident after feedback doesn't need to take a full lesson but should be a regular element of responding to feedback
- Learning dialogue clear specifics re how to improve skill and knowledge
- Comments skill and knowledge focused not behaviour focused
- Teachers are expected to maintain a marksheet logging students' scores for HW and scores for classwork/exit tickets i.e., progress with multi-step questions. Tests [low stakes and MCQs] recorded via Teams Gradebook

## Learning and teaching

- Question deconstruction explicitly taught [RUCSAC/BUG]
- Use of technical terminology consistently and across all year groups including keywords with definitions in the relevant boxes in students' work. [The etymology of keywords is being built into sows and should be included wherever possible].
- Worded questions used for all areas
- Problem solving approach explicit
- Working out expected
- Student's redraft/refine to reinforce standards expected/learning [NOT a pretty copy!]
- Pupils write their own questions / problems
- Language of the exam questions explored and used: work out, describe, explain, solve, write down
- Starters used to revise
- Learning pitched to stretch no ceilings created
- A4L to address misconceptions and to inform planning for progress
- Directed questioning to hold students to account and challenge with a plenary each lesson

# **Curriculum Design**

## **Coherence and flexibility**

Our curriculum is structured in units. For these units to be coherent, the lessons within a unit must be taught in order. However, across a year group, the units themselves do not need to be taught in order, except for 'Programming' units, where concepts and skills rely on prior learning and experiences.

#### **Knowledge organisation**

Our curriculum uses the National Centre for Computing Education's computing taxonomy to ensure comprehensive coverage of the subject. This has been developed through a thorough review of the KS1–4 computing programme of study, and the GCSE and A level computer science specifications across all awarding bodies. All learning outcomes can be described through a high-level taxonomy of ten strands, ordered alphabetically as follows:

- Algorithms Be able to comprehend, design, create, and evaluate algorithms
- **Computer networks** Understand how networks can be used to retrieve and share information, and how they come with associated risks
- **Computer systems** Understand what a computer is, and how its constituent parts function together as a whole
- Creating media Select and create a range of media including text, images, sounds, and video
- Data and information Understand how data is stored, organised, and used to represent realworld artefacts and scenarios
- **Design and development** Understand the activities involved in planning, creating, and evaluating computing artefacts
- Effective use of tools Use software tools to support computing work
- Impact of technology Understand how individuals, systems, and society as a whole interact with computer systems
- **Programming** Create software to allow computers to solve problems
- Safety and security Understand risks when using technology, and how to protect individuals and systems

The taxonomy provides categories and an organised view of content to encapsulate the discipline of computing. Whilst all strands are present at all phases, they are not always taught explicitly.

## **Core principles**

#### Inclusive and ambitious

Our Computing Curriculum has been written to support all pupils. Each lesson is sequenced so that it builds on the learning from the previous lesson, and where appropriate, activities are scaffolded so that all pupils can succeed and thrive. Scaffolded activities provide pupils with extra resources, such as visual prompts, to reach the same learning goals as the rest of the class. Exploratory tasks foster a deeper understanding of a concept, encouraging pupils to apply their learning in different contexts and make connections with other learning experiences.

As well as scaffolded activities, embedded within the lessons are a range of pedagogical strategies which support making computing topics more accessible.

#### **Research-informed**

The subject of computing is much younger than many other subjects, and as such, there is still a lot more to learn about how to teach it effectively. To ensure that teachers are as prepared as possible, our curriculum builds on a set of pedagogical principles, which are underpinned by the latest computing research, to demonstrate effective pedagogical strategies throughout.

To remain up to date as research continues to develop, every aspect of our curriculum is reviewed each year and changes are made as necessary.

## **Subject Specific Pedagogy and CPD**

Computing is a broad discipline, and computing teachers require a range of strategies to deliver effective lessons to their pupils. The National Centre for Computing Education's pedagogical approach consists of 12 key principles underpinned by research: each principle has been shown to contribute to effective teaching and learning in computing.

It is recommended that teachers use their professional judgement to review, select, and apply relevant strategies for their pupils.

These 12 principles are embodied by the Teach Computing Curriculum, and examples of their application can be found throughout the units of work at every key stage.

It is important for our teachers to adopt this pedagogy as it links to the CPD that has been used to develop our teachers over the last 12 months:

- Computing at Schools Master Teacher Anthony Crowther
- National Centre for Computing Education Accelerator program Charles Wray

#### Lead with concepts

Support pupils in the acquisition of knowledge, using key concepts, terms, and vocabulary, providing opportunities to build a shared and consistent understanding.

Glossaries, concept maps and displays, along with regular recall and revision, can support this approach.

#### **Structure lessons**

Use supportive frameworks when planning lessons, such as PRIMM (Predict, Run, Investigate, Modify, Make and Use-Modify-Create. These frameworks are based on research and ensure that differentiation can be built in at various stages of the lesson. Primarily it begins with comprehending code rather than starting with a blank slate.

#### Make concrete

Bring abstract concepts to life with real-world, contextual examples and a focus on interdependencies with other curriculum subjects. This can be achieved using unplugged activities, proposing analogies, storytelling around concepts, and finding examples of the concepts in pupils' lives.

#### Unplug, unpack, repack

Teach new concepts by first unpacking complex terms and ideas, exploring these ideas in unplugged and familiar contexts, then repacking this new understanding into the original concept. This approach, called semantic waves can help pupils develop a secure understanding of complex concepts.

#### Work together

Encourage collaboration, specifically using pair programming and peer instruction and structured group tasks. Working together stimulates classroom dialogue, articulation of concepts, and development of shared understanding

## Read and explore code first

When teaching programming, focus first on code 'reading' activities, before code writing. With both blockbased and text-based programming, encourage pupils to review and interpret blocks of code. Research has shown that being able to read, trace, and explain code augments pupils' ability to write code.

## **Create projects**

Use project-based learning activities to provide pupils with the opportunity to apply and consolidate their knowledge and understanding. Design is an important, often overlooked aspect of computing. Pupils can consider how to develop an artefact for a particular user or function and evaluate it against a set of criteria.

## **Model everything**

Model processes or practices — everything from debugging code to binary number conversions — using techniques such as worked examples and live coding. Modelling is particularly beneficial to novices, providing scaffolding that can be gradually taken away.

#### Get hands-on

Use physical computing and making activities that offer tactile and sensory experiences to enhance learning. Combining electronics and programming with arts and crafts (especially through exploratory projects) provides pupils with a creative, engaging context to explore and apply computing concepts.

#### **Challenge misconceptions**

Use formative questioning to uncover misconceptions and adapt teaching to address them as they occur. Awareness of common misconceptions alongside discussion, concept mapping, peer instruction, or simple quizzes can help identify areas of confusion.

## Add variety

Provide activities with different levels of direction, scaffolding, and support that promote active learning, ranging from highly structured to more exploratory tasks.

Adapting your instruction to suit different objectives will help keep all pupils engaged and encourage greater independence.

#### Foster program comprehension

Use a variety of activities to consolidate knowledge and understanding of the function and structure of program s including debugging, tracing, and Parson's Problems. Regular comprehension activities will help secure understanding and build connections with new knowledge.

## Structure of KS3 Units of Work and Summaries

Presented here in the order of delivery at Park.

|        | Unit 1                                                                                                                                       | Unit 2                                                                                                                 | Unit 3                                                                                                                                 | Unit 4                                                                                                                      | Unit 5                                                                                                             | Unit 6                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Year 7 | Impact of<br>Technology<br>Identifying how to use<br>online collaboration tools<br>respectfully. An<br>introduction to the<br>computing lab. | <b>Modelling data</b><br>Sorting and filtering data<br>and using formulas and<br>functions in spreadsheet<br>software. | <b>Networks</b><br>Recognising networking<br>hardware and explaining<br>how networking<br>components are used for<br>communication.    | <b>Programming Part 1</b><br>Applying the<br>programming constructs<br>of sequence, selection,<br>and iteration in Scratch. | <b>Programming Part 2</b><br>Using subroutines to<br>decompose a problem<br>that incorporates lists in<br>Scratch. | Using Media<br>Creating a digital product<br>for a real-world cause.                |
| Year 8 | <b>Computer Systems</b><br>Exploring the<br>fundamental elements<br>that make up a computer<br>system.                                       | Developing for the<br>web<br>Using HTML and CSS to<br>create webpages.                                                 | Introduction to<br>Python<br>Applying the<br>programming constructs<br>of sequence, selection,<br>and iteration in Python.             | Vector Graphics<br>Creating vector graphics<br>through objects, layering,<br>and path manipulation.                         | Mobile Apps<br>Using event-driven<br>programming to create<br>an online gaming app.                                | Data<br>Representations<br>Representing numbers<br>and text using binary<br>digits. |
| Year 9 | Cybersecurity<br>Identifying how users and<br>organisations can protect<br>themselves from<br>cyberattacks.                                  | Data Science<br>Using data to investigate<br>problems and make real-<br>world changes.                                 | Animations<br>Creating 3D animations<br>through object<br>manipulation and<br>tweaking and adjusting<br>lighting and camera<br>angles. | <b>Physical Computing</b><br>Sensing and controlling<br>with the micro:bit.                                                 | <b>Python</b><br><b>Programming</b><br>Manipulating strings and<br>lists. Creating a<br>programming project.       | Data<br>Representations<br>Representing images and<br>sound using binary digits.    |

# KS3 Units Assessment Taxonomy

| Objectives                                                                                                                                                                                                                                                                                                               | 7.1 | 7.2 | 7.3 | 7.4 | 7.5 | 7.6 | 8.1 | 8.2 | 8.3 | 8.4 | 8.5 | 8.6 | 9.1 | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Design, use and evaluate computational abstractions that model the state<br>and behaviour of real-world problems and physical systems                                                                                                                                                                                    |     |     |     |     |     | т   |     |     | т   |     |     | т   | т   |     |     |     |     | т   |
| Understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem                                                                                                         |     |     |     | т   | т   |     |     |     | т   |     |     | т   | т   |     |     |     |     | т   |
| Use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions                                              |     |     |     | т   | т   |     |     |     |     |     |     | т   | т   |     |     |     |     | т   |
| Understand simple Boolean logic [for example, AND, OR and NOT] and some<br>of its uses in circuits and programming; understand how numbers can be<br>represented in binary, and be able to carry out simple operations on binary<br>numbers [for example, binary addition, and conversion between binary and<br>decimal] |     |     |     | т   | т   |     |     |     |     |     | т   |     |     |     |     |     |     |     |
| Understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems                                                                                                                                                                          |     | т   |     |     |     |     |     |     |     |     | т   |     |     |     |     |     |     |     |
| Understand how instructions are stored and executed within a computer<br>system; understand how data of various types (including text, sounds and<br>pictures) can be represented and manipulated digitally, in the form of<br>binary digits                                                                             |     |     |     |     |     |     |     | т   |     |     | т   | т   | т   |     |     | т   |     | т   |
| Undertake creative projects that involve selecting, using, and combining multiple applications, preferably across a range of devices, to achieve challenging goals, including collecting and analysing data and meeting the needs of known users                                                                         |     |     | т   |     |     | т   |     |     |     | т   |     |     |     |     | т   |     |     |     |
| Create, reuse, revise and repurpose digital artefacts for a given audience, with attention to trustworthiness, design and usability                                                                                                                                                                                      | т   |     | т   | т   | т   |     | т   |     | т   | т   |     |     |     | т   |     |     |     |     |
| Understand a range of ways to use technology safely, respectfully,<br>responsibly and securely, including protecting their online identity and<br>privacy; recognise inappropriate content, contact and conduct, and know<br>how to report concerns                                                                      | т   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Т   |     |

# GCSE Curriculum and Assessment Taxonomy

| Specification                 | Sub-topic                  | To know and understand:                                                                                                        | Units                       | Algorithms 1 | Computer System | <b>Jata Representati</b> | Algorithms 2 | mpacts of<br>technolog | Vetworks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|-------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-----------------|--------------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.1 - Systems<br>architecture | Architecture<br>of the CPU | common CPU components and their<br>function:<br>- ALU (Arithmetic Logic Unit)<br>- CU (Control Unit)<br>- Cache<br>- Registers | Computer Systems            |              |                 |                          |              |                        |          |          |                  |          |           | -         |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Architecture of the CPU    | The purpose of the CPU:<br>- The fetch-execute cycle                                                                           | Computer Systems            |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | CPU<br>performance         | how common characteristics of CPUs<br>affect their performance:<br>- clock speed<br>- cache size<br>- number of cores          | Computer Systems            |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Embedded<br>systems        | Examples of embedded systems                                                                                                   | Object-oriented programming |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Embedded<br>systems        | The purpose and characteristics of embedded systems                                                                            | Object-oriented programming |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | binary shifts                                                                                                                  | Data Representation         |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how an image is represented as a series of pixels, represented in binary                                                       | Data Representation         |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how sound can be sampled and stored in digital form                                                                            | Data Representation         |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how to add two binary integers together<br>(up to and including 8 bits) and explain<br>overflow errors which may occur         | Data Representation         |              |                 |                          |              |                        |          |          |                  |          |           |           |             |                   |                            |                                |

|                             |                                |                                                                                                                                                                             |                     | ims 1        | ter System | Data Representati | ims 2      | s of<br>technolog | ks       | ~        | Databases and SC | е        | u         | -         | tines       | and lists   | Dictionaries and datafiles | Object-oriented<br>programming |
|-----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|------------|-------------------|------------|-------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------|----------------------------|--------------------------------|
| Specification               | Sub-topic                      | To know and understand:                                                                                                                                                     | Units               | Algorithms 1 | Computer   | Data Re           | Algorithms | Impacts of<br>tec | Networks | Security | Databas          | Sequence | Selection | Iteration | Subroutines | Strings and | Diction                    | Object-                        |
| 1.2 - Memory<br>and storage | Data storage                   | How to convert binary integers to their hexadecimal equivalents and vice versa                                                                                              | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | How to convert positive denary whole<br>numbers into 2-digit hexadecimal<br>numbers and vice versa                                                                          | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | How to convert positive denary whole<br>numbers to binary numbers (up to and<br>including 8 bits) and vice versa                                                            | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | metadata                                                                                                                                                                    | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the effect of colour depth and resolution<br>on:<br>- the quality of the image<br>- the size of an image file                                                               | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | The effect of sample rate, duration and bit<br>depth on:<br>- The playback quality<br>- The size of a sound file                                                            | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the relationship between the number of<br>bits per character in a character set, and<br>the number of characters which can be<br>represented, e.g.:<br>- ASCII<br>- Unicode | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the term 'character-set'                                                                                                                                                    | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the use of binary codes to represent characters                                                                                                                             | Data Representation |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Primary<br>storage<br>(Memory) | the difference between RAM and ROM                                                                                                                                          | Computer Systems    |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage | Primary<br>storage<br>(Memory) | The need for primary storage                                                                                                                                                | Computer Systems    |              |            |                   |            |                   |          |          |                  |          |           |           |             |             |                            |                                |

|                                                                |                                |                                                                                                                                                                                                                     |                     | thms 1     | uter System | Data Representati | thms 2       | ts of<br>technolog | rks      | ty       | Databases and SC | nce      | ion       | u         | Subroutines | s and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|----------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------|-------------------|--------------|--------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------|----------------------------|--------------------------------|
| Specification                                                  | Sub-topic                      | To know and understand:                                                                                                                                                                                             | Units               | Algorithms | Computer    | Data R            | Algorithms 2 | Impacts of<br>tec  | Networks | Security | Databa           | Sequence | Selection | lteration | Subro       | Strings and | Diction                    | Object                         |
| 1.2 - Memory<br>and storage                                    | Primary<br>storage<br>(Memory) | the purpose of RAM in a computer system                                                                                                                                                                             | Computer Systems    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Primary<br>storage<br>(Memory) | the purpose of ROM in a computer system                                                                                                                                                                             | Computer Systems    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Secondary<br>storage           | common types of storage:<br>- optical<br>- magnetic<br>- solid state                                                                                                                                                | Computer Systems    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Secondary<br>storage           | the advantages and disadvantages of<br>these, using characteristics:<br>- capacity<br>- speed<br>- portability<br>- durability<br>- reliability<br>- cost.                                                          | Computer Systems    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Secondary storage              | the need for secondary storage                                                                                                                                                                                      | Computer Systems    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Units                          | How data needs to be converted into a<br>binary format to be processed by a<br>computer                                                                                                                             | Data Representation |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.2 - Memory<br>and storage                                    | Units                          | The units of data storage:<br>- Bit<br>- Nibble (4 bits)<br>- Byte (8 bits)<br>- Kilobyte (1,000 bytes or 1 KB)<br>- Megabyte (1,000 KB)<br>- Gigabyte (1,000 MB)<br>- Terabyte (1,000 GB)<br>- Petabyte (1,000 TB) | Data Representation |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies        | factors that affect the performance of networks                                                                                                                                                                     | Networks            |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies        | star and mesh network topologies                                                                                                                                                                                    | Networks            |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |

| Specification                                                  | Sub-topic                                                     | To know and understand:                                                                                                                                                                                                                                                                                                                               | Units                         | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | mpacts of<br>technolog | letworks | Security | Databases and SC | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-----------------|-------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the different roles of computers in a client-server and a peer-to-peer network                                                                                                                                                                                                                                                                        | Networks                      |              |                 |                   | _            | -                      |          |          |                  |          |           | -        |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the hardware needed to connect stand-<br>alone computers into a Local Area<br>Network:<br>- wireless access points<br>- routers<br>- switches<br>- NIC (Network Interface Controller/Card)<br>- transmission media                                                                                                                                    | Networks                      |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the internet as a worldwide collection of<br>computer networks:<br>- DNS (Domain Name Server)<br>- hosting<br>- the cloud<br>- web servers and clients                                                                                                                                                                                                | Computer Systems,<br>Networks |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | types of networks:<br>- LAN (Local Area Network)<br>- WAN (Wide Area Network)                                                                                                                                                                                                                                                                         | Networks                      |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | Common protocols including:<br>- TCP/IP (Transmission Control<br>Protocol/Internet Protocol)<br>- HTTP (Hyper Text Transfer Protocol)<br>- HTTPS (Hyper Text Transfer Protocol<br>Secure)<br>- FTP (File Transfer Protocol)<br>- POP (Post Office Protocol)<br>- IMAP (Internet Message Access<br>Protocol)<br>- SMTP (Simple Mail Transfer Protocol) | Networks                      |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | IP addressing and MAC addressing                                                                                                                                                                                                                                                                                                                      | Networks                      |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |

| Specification                                                  | Sub-topic                                                     | To know and understand:                                                                                                                                                                                                        | Units              | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | Modes of connection:<br>- Wired<br>- Ethernet<br>- Wireless<br>- Wi-Fi<br>- Bluetooth                                                                                                                                          | Networks           |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | Network standards                                                                                                                                                                                                              | Networks           |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | the concept of layers                                                                                                                                                                                                          | Networks           |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.4 - Network<br>security                                      | Identifying<br>and<br>preventing<br>vulnerabilities           | Common prevention methods:<br>- Penetration testing<br>- Anti-malware software<br>- Firewalls<br>- User access levels<br>- Passwords<br>- Encryption<br>- Physical security                                                    | Networks, Security |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.4 - Network<br>security                                      | Threats to<br>computer<br>systems and<br>networks             | Forms of attack:<br>- Malware<br>- Social engineering, e.g. phishing,<br>people as the 'weak point'<br>- Brute-force attacks<br>- Denial of service attacks<br>- Data interception and theft<br>- The concept of SQL injection | Security           |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.5 - Systems<br>software                                      | Utility<br>software                                           | the purpose and functionality of utility software                                                                                                                                                                              | Computer Systems   |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.5 - Systems<br>software                                      | Utility<br>software                                           | utility system software:<br>- encryption software<br>- defragmentation<br>- data compression                                                                                                                                   | Animations         |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

| Specification                                                                                     | Sub-topic                                                  | To know and understand:                                                                                                                                                                                               | Units                                                                                          | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.6 - Ethical,<br>legal, cultural<br>and<br>environmenta<br>l impacts of<br>digital<br>technology | Ethical, legal,<br>cultural and<br>environmental<br>impact | Impacts of digital technology on wider<br>society including:<br>- Ethical issues<br>- Legal issues<br>- Cultural issues<br>- Environmental issues<br>- Privacy issues                                                 | Impacts of technology,<br>Security                                                             |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.6 - Ethical,<br>legal, cultural<br>and<br>environmenta<br>l impacts of<br>digital<br>technology | Ethical, legal,<br>cultural and<br>environmental<br>impact | Legislation relevant to Computer Science:<br>- The Data Protection Act 2018<br>- Computer Misuse Act 1990<br>- Copyright Designs and Patents Act<br>1988<br>- Software licences (i.e. open source and<br>proprietary) | Impacts of technology                                                                          |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.1 -<br>Algorithms                                                                               | Computationa<br>I thinking                                 | Principals of computational thinking:<br>- abstraction<br>- decomposition<br>- algorithmic thinking                                                                                                                   | Algorithms 1                                                                                   |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | (create, interpret, correct, complete, and<br>refine algorithms using:<br>- pseudocode<br>- flowcharts<br>- reference language / high-level<br>programming language)                                                  | Algorithms 1, Algorithms<br>2, Flat-file<br>databases,<br>Iteration,<br>Selection,<br>Sequence |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | Identify common errors                                                                                                                                                                                                | Algorithms 1                                                                                   |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | Trace tables                                                                                                                                                                                                          | Algorithms 1                                                                                   |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.1 -<br>Algorithms                                                                               | Searching<br>and sorting<br>algorithms                     | standard searching algorithms:<br>- binary search<br>- linear search                                                                                                                                                  | Algorithms 2                                                                                   |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

|                                      |                                         |                                                                                                                              |                                                      | thms 1     | uter System | Data Representati | Algorithms 2 | ts of<br>technolog | rks      | ty       | Databases and SC | nce      | ion       | n         | Subroutines | s and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|--------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|-------------|-------------------|--------------|--------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------|----------------------------|--------------------------------|
| Specification                        | Sub-topic                               | To know and understand:                                                                                                      | Units                                                | Algorithms | Computer    | Data R            | Algorit      | Impacts of<br>tec  | Networks | Security | Databa           | Sequence | Selection | lteration | Subro       | Strings a   | Dictior                    | Object                         |
| 2.1 -<br>Algorithms                  | Searching<br>and sorting<br>algorithms  | standard sorting algorithms:<br>- bubble sort<br>- merge sort<br>- insertion sort                                            | Algorithms 2                                         |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | (the use of SQL to search for data)                                                                                          | Databases and SQL                                    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | how to use sub programs (functions and procedures) to produce structured code                                                | Iteration, Sequence,<br>Subroutines                  |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | Random number generation                                                                                                     | Selection, Strings and lis                           |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | the use of arrays (or equivalent) when<br>solving problems, including both one-<br>dimensional and two-dimensional<br>arrays | Strings and lists                                    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | the use of basic file handling operations:<br>- open<br>- read<br>- write<br>- close                                         | Dictionaries and datafiles<br>Flat-file<br>databases |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | the use of basic string manipulation                                                                                         | Strings and lists                                    |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques | the use of records to store data                                                                                             | Dictionaries and datafiles<br>Strings and lists      |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Data types                              | the use of data types:<br>- integer<br>- real<br>- Boolean<br>- character and string<br>- casting                            | Sequence                                             |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |
| 2.2 -<br>Programming<br>fundamentals | Programming fundamentals                | the common arithmetic operators                                                                                              | Selection                                            |            |             |                   |              |                    |          |          |                  |          |           |           |             |             |                            |                                |

| Specification                            | Sub-topic                   | To know and understand:                                                                                                                                                                | Units                                              | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | mpacts of<br>technolog | Vetworks | Security | Databases and SC | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|-----------------|-------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|----------------------------|--------------------------------|
| 2.2 -<br>Programming<br>fundamentals     | Programming<br>fundamentals | the common Boolean operators AND, OR and NOT                                                                                                                                           | Selection                                          | -            |                 |                   | 1            | -                      | ~~~      |          |                  |          |           | -        |             |                   |                            |                                |
| 2.2 -<br>Programming<br>fundamentals     | Programming<br>fundamentals | the use of the three basic programming<br>constructs used to control the flow of a<br>program:<br>- sequence<br>- selection<br>- iteration (count- and condition-<br>controlled loops) | Iteration, Programming I<br>Selection,<br>Sequence |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.2 -<br>Programming<br>fundamentals     | Programming<br>fundamentals | the use of variables, constants, operators, inputs, outputs and assignments                                                                                                            | Selection, Sequence,<br>Subroutines                |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Defensive<br>design         | Input validation                                                                                                                                                                       | Iteration, Sequence                                |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Defensive<br>design         | Maintainability:<br>- Use of sub programs<br>- Naming conventions<br>- Indentation<br>- Commenting                                                                                     | Sequence                                           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | identify syntax and logic errors                                                                                                                                                       | Sequence                                           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | Refining algorithms                                                                                                                                                                    | Dictionaries and datafiles                         |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | selecting and using suitable test data:<br>- Normal<br>- Boundary<br>- Invalid<br>- Erroneous                                                                                          | Subroutines                                        |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | types of testing:<br>- iterative<br>- final/terminal                                                                                                                                   | Dictionaries and datafiles<br>Subroutines          |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |

| Specification                                                                         | Sub-topic                                                | To know and understand:                                                                                                                                                     | Units                            | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | applying logical operators in truth tables to solve problems                                                                                                                | Computer Systems                 |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | combining Boolean operators using AND, OR and NOT                                                                                                                           | Computer Systems                 |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | truth tables                                                                                                                                                                | Computer Systems,<br>Subroutines |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | Characteristics and purpose of different<br>levels of programming language:<br>- High-level languages<br>- Low-level languages                                              | Computer Systems,<br>Sequence    |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | the characteristics of a compiler and an interpreter                                                                                                                        | Sequence                         |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | the purpose of translators                                                                                                                                                  | Sequence                         |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | The<br>Integrated<br>Development<br>Environment<br>(IDE) | common tools and facilities available in<br>an integrated development environment<br>(IDE):<br>- editors<br>- error diagnostics<br>- run-time environment<br>- translators. | Sequence                         |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture                                                         | Architecture<br>of the CPU                               | common CPU components and their<br>function:<br>- ALU (Arithmetic Logic Unit)<br>- CU (Control Unit)<br>- Cache<br>- Registers                                              | Computer Systems                 |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

| Specification                 | Sub-topic                  | To know and understand:                                                                                                            | Units                          | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|-------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.1 - Systems<br>architecture | Architecture of the CPU    | The purpose of the CPU:<br>- The fetch-execute cycle                                                                               | Computer Systems               |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Architecture<br>of the CPU | Von Neumann architecture:<br>- MAR (Memory Address Register)<br>- MDR (Memory Data Register)<br>- Program Counter<br>- Accumulator | Computer Systems               |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | CPU<br>performance         | how common characteristics of CPUs<br>affect their performance:<br>- clock speed<br>- cache size<br>- number of cores              | Computer Systems               |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Embedded<br>systems        | Examples of embedded systems                                                                                                       | Object-oriented<br>programming |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.1 - Systems<br>architecture | Embedded<br>systems        | The purpose and characteristics of<br>embedded systems                                                                             | Object-oriented programming    |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Compression                | need for compression                                                                                                               |                                |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Compression                | types of compression:<br>- lossy<br>- lossless.                                                                                    |                                |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | binary shifts                                                                                                                      | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how an image is represented as a series of pixels, represented in binary                                                           | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how sound can be sampled and stored in digital form                                                                                | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | how to add two binary integers together<br>(up to and including 8 bits) and explain<br>overflow errors which may occur             | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | How to convert binary integers to their hexadecimal equivalents and vice versa                                                     | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage   | Data storage               | How to convert positive denary whole<br>numbers into 2-digit hexadecimal<br>numbers and vice versa                                 | Data Representation            |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

| Specification               | Sub-topic                      | To know and understand:                                                                                                                                                     | Units               | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|-----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.2 - Memory<br>and storage | Data storage                   | How to convert positive denary whole<br>numbers to binary numbers (up to and<br>including 8 bits) and vice versa                                                            | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | metadata                                                                                                                                                                    | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the effect of colour depth and resolution<br>on:<br>- the quality of the image<br>- the size of an image file                                                               | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | The effect of sample rate, duration and bit<br>depth on:<br>- The playback quality<br>- The size of a sound file                                                            | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the relationship between the number of<br>bits per character in a character set, and<br>the number of characters which can be<br>represented, e.g.:<br>- ASCII<br>- Unicode | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the term 'character-set'                                                                                                                                                    | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Data storage                   | the use of binary codes to represent characters                                                                                                                             | Data Representation |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Primary<br>storage<br>(Memory) | the difference between RAM and ROM                                                                                                                                          | Computer Systems    |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Primary<br>storage<br>(Memory) | The need for primary storage                                                                                                                                                | Computer Systems    |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.2 - Memory<br>and storage | Primary<br>storage<br>(Memory) | the need for virtual memory                                                                                                                                                 |                     |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

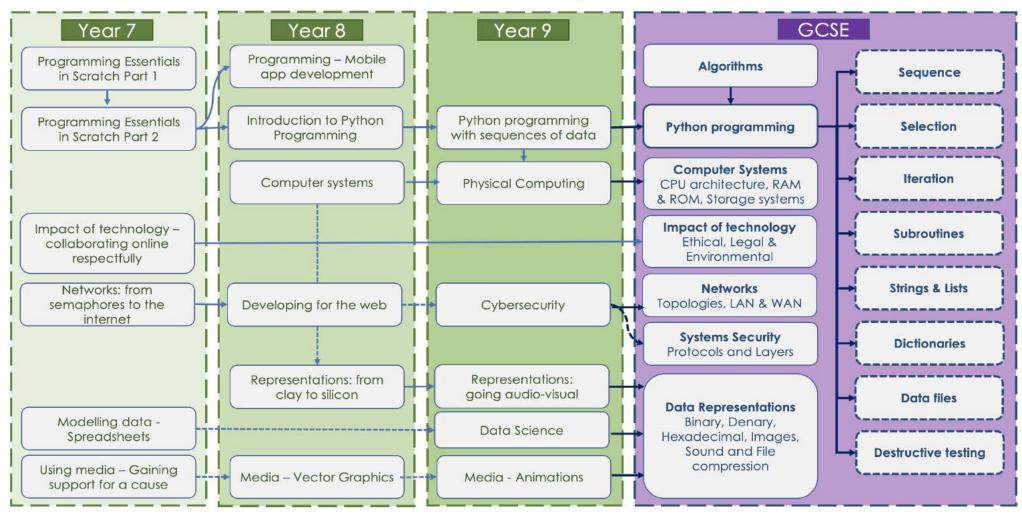
| Specification                  | Sub-topic                      | To know and understand:                                                                                                                                                                                             | Units               | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | mpacts of<br>technolog | Vetworks | Security | Databases and SC | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----------------|-------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.2 - Memory<br>and storage    | Primary<br>storage<br>(Memory) | the purpose of RAM in a computer system                                                                                                                                                                             | Computer Systems    |              |                 | ]                 |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Primary<br>storage<br>(Memory) | the purpose of ROM in a computer system                                                                                                                                                                             | Computer Systems    |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Secondary<br>storage           | common types of storage:<br>- optical<br>- magnetic<br>- solid state                                                                                                                                                | Computer Systems    |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Secondary<br>storage           | suitable storage devices and storage media for a given application                                                                                                                                                  | Computer Systems    |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Secondary<br>storage           | the advantages and disadvantages of<br>these, using characteristics:<br>- capacity<br>- speed<br>- portability<br>- durability<br>- reliability<br>- cost.                                                          | Computer Systems    |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Secondary storage              | the need for secondary storage                                                                                                                                                                                      | Computer Systems    |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Units                          | data capacity and calculation of data capacity requirements                                                                                                                                                         |                     |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Units                          | How data needs to be converted into a binary format to be processed by a computer                                                                                                                                   | Data Representation |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.2 - Memory<br>and storage    | Units                          | The units of data storage:<br>- Bit<br>- Nibble (4 bits)<br>- Byte (8 bits)<br>- Kilobyte (1,000 bytes or 1 KB)<br>- Megabyte (1,000 KB)<br>- Gigabyte (1,000 MB)<br>- Terabyte (1,000 GB)<br>- Petabyte (1,000 TB) | Data Representation |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks, | Networks and topologies        | factors that affect the performance of networks                                                                                                                                                                     | Networks            |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |

| Specification                                                  | Sub-topic                                                     | To know and understand:                                                                                                                                                                                                                                                                                                                               | Units                         | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| connections<br>and protocols                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                       |                               |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | star and mesh network topologies                                                                                                                                                                                                                                                                                                                      | Networks                      |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the different roles of computers in a client-server and a peer-to-peer network                                                                                                                                                                                                                                                                        | Networks                      |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the hardware needed to connect stand-<br>alone computers into a Local Area<br>Network:<br>- wireless access points<br>- routers<br>- switches<br>- NIC (Network Interface Controller/Card)<br>- transmission media                                                                                                                                    | Networks                      |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | the internet as a worldwide collection of<br>computer networks:<br>- DNS (Domain Name Server)<br>- hosting<br>- the cloud<br>- web servers and clients                                                                                                                                                                                                | Computer Systems,<br>Networks |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Networks and topologies                                       | types of networks:<br>- LAN (Local Area Network)<br>- WAN (Wide Area Network)                                                                                                                                                                                                                                                                         | Networks                      |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers | Common protocols including:<br>- TCP/IP (Transmission Control<br>Protocol/Internet Protocol)<br>- HTTP (Hyper Text Transfer Protocol)<br>- HTTPS (Hyper Text Transfer Protocol<br>Secure)<br>- FTP (File Transfer Protocol)<br>- POP (Post Office Protocol)<br>- IMAP (Internet Message Access<br>Protocol)<br>- SMTP (Simple Mail Transfer Protocol) | Networks                      |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

| Specification                                                  | Sub tonic                                                                  | To know and understand.                                                                                                                                                                                                        |                    | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | mpacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|----------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-----------------|-------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|----------------------------|--------------------------------|
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Sub-topic<br>Wired and<br>wireless<br>networks,<br>protocols and<br>layers | To know and understand:<br>Encryption                                                                                                                                                                                          | Security           | 4            | 0               |                   | A            | <u>-</u>               | Z        | S        |                  | S        | S         | 1<br>It  | S           | S                 |                            | 0 0                            |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers              | IP addressing and MAC addressing                                                                                                                                                                                               | Networks           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers              | Modes of connection:<br>- Wired<br>- Ethernet<br>- Wireless<br>- Wi-Fi<br>- Bluetooth                                                                                                                                          | Networks           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers              | Network standards                                                                                                                                                                                                              | Networks           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.3 -<br>Computer<br>networks,<br>connections<br>and protocols | Wired and<br>wireless<br>networks,<br>protocols and<br>layers              | the concept of layers                                                                                                                                                                                                          | Networks           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.4 - Network<br>security                                      | Identifying<br>and<br>preventing<br>vulnerabilities                        | Common prevention methods:<br>- Penetration testing<br>- Anti-malware software<br>- Firewalls<br>- User access levels<br>- Passwords<br>- Encryption<br>- Physical security                                                    | Networks, Security |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 1.4 - Network<br>security                                      | Threats to<br>computer<br>systems and<br>networks                          | Forms of attack:<br>- Malware<br>- Social engineering, e.g. phishing,<br>people as the 'weak point'<br>- Brute-force attacks<br>- Denial of service attacks<br>- Data interception and theft<br>- The concept of SQL injection | Security           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |

|                                                                                                   |                                                            |                                                                                                                                                                                                                       |                                                                                          | -          | System          | sentati          | 2          | hnolog                 |          |          | and SG           |          |           |          | S           | lists             | s and                         | nted<br>ng                     |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|-----------------|------------------|------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|-------------------------------|--------------------------------|
|                                                                                                   |                                                            |                                                                                                                                                                                                                       |                                                                                          | Algorithms | Computer Systen | Data Representat | Algorithms | mpacts of<br>technolog | Networks | Security | Databases and So | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and<br>datafiles | Object-oriented<br>programming |
| Specification                                                                                     | Sub-topic                                                  | To know and understand:                                                                                                                                                                                               | Units                                                                                    | Alç        | ပိ              | Da               | Alç        | <u> </u>               | Ne       | Se       | Da               | Se       | Se        | Ite      | Su          | Str               | Dic                           | do                             |
| 1.5 - Systems<br>software                                                                         | Operating<br>systems                                       | The purpose and functionality of<br>operating systems:<br>- user interface<br>- memory management and multitasking<br>- peripheral management and drivers<br>- user management<br>- file management                   | Computer Systems                                                                         |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 1.5 - Systems<br>software                                                                         | Utility<br>software                                        | the purpose and functionality of utility software                                                                                                                                                                     | Computer Systems                                                                         |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 1.5 - Systems<br>software                                                                         | Utility<br>software                                        | utility system software:<br>- encryption software<br>- defragmentation<br>- data compression                                                                                                                          | Animations                                                                               |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 1.6 - Ethical,<br>legal, cultural<br>and<br>environmenta<br>l impacts of<br>digital<br>technology | Ethical, legal,<br>cultural and<br>environmental<br>impact | Impacts of digital technology on wider<br>society including:<br>- Ethical issues<br>- Legal issues<br>- Cultural issues<br>- Environmental issues<br>- Privacy issues                                                 | Impacts of technology,<br>Security                                                       |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 1.6 - Ethical,<br>legal, cultural<br>and<br>environmenta<br>l impacts of<br>digital<br>technology | Ethical, legal,<br>cultural and<br>environmental<br>impact | Legislation relevant to Computer Science:<br>- The Data Protection Act 2018<br>- Computer Misuse Act 1990<br>- Copyright Designs and Patents Act<br>1988<br>- Software licences (i.e. open source and<br>proprietary) | Impacts of technology                                                                    |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 2.1 -<br>Algorithms                                                                               | Computationa<br>I thinking                                 | Principals of computational thinking:<br>- abstraction<br>- decomposition<br>- algorithmic thinking                                                                                                                   | Algorithms 1                                                                             |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | <ul> <li>(create, interpret, correct, complete, and<br/>refine algorithms using:</li> <li>pseudocode</li> <li>flowcharts</li> <li>reference language / high-level<br/>programming language)</li> </ul>                | Algorithms 1,<br>Algorithms 2, Flat file<br>databases, Iteration,<br>Selection, Sequence |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | Identify common errors                                                                                                                                                                                                | Algorithms 1                                                                             |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |
| 2.1 -<br>Algorithms                                                                               | Designing,<br>creating and<br>refining<br>algorithms       | Identify the inputs, processes, and outputs for a problem                                                                                                                                                             | Algorithms 1                                                                             |            |                 |                  |            |                        |          |          |                  |          |           |          |             |                   |                               |                                |

|                                      |                                                      |                                                                                                                              |                                                      | ns 1       | r System | Data Representati | ns 2         | of<br>technolog  |          |          | is and SG     | Ø        |           |          | les         | and lists | ies and                       | iented<br>ning                 |
|--------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|----------|-------------------|--------------|------------------|----------|----------|---------------|----------|-----------|----------|-------------|-----------|-------------------------------|--------------------------------|
| Specification                        | Sub-topic                                            | To know and understand:                                                                                                      | Units                                                | Algorithms | Computer | Jata Rep          | Algorithms 2 | mpacts of<br>tec | Networks | Security | Databases and | Sequence | Selection | teration | Subroutines | Strings a | Dictionaries and<br>datafiles | Object-oriented<br>programming |
| 2.1 -<br>Algorithms                  | Designing,<br>creating and<br>refining<br>algorithms | Structure diagrams                                                                                                           | Subroutines                                          | _          |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.1 -<br>Algorithms                  | Designing,<br>creating and<br>refining<br>algorithms | Trace tables                                                                                                                 | Algorithms 1                                         |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.1 -<br>Algorithms                  | Searching<br>and sorting<br>algorithms               | standard searching algorithms:<br>- binary search<br>- linear search                                                         | Algorithms 2                                         |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.1 -<br>Algorithms                  | Searching<br>and sorting<br>algorithms               | standard sorting algorithms:<br>- bubble sort<br>- merge sort<br>- insertion sort                                            | Algorithms 2                                         |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | (the use of SQL to search for data)                                                                                          | Databases and SQL                                    |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | how to use sub programs (functions and procedures) to produce structured code                                                | Iteration, Sequence,<br>Subroutines                  |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | Random number generation                                                                                                     | Selection, Strings and lis                           |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | the use of arrays (or equivalent) when<br>solving problems, including both one-<br>dimensional and two-dimensional<br>arrays | Strings and lists                                    |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | the use of basic file handling operations:<br>- open<br>- read<br>- write<br>- close                                         | Dictionaries and datafiles<br>Flat-file<br>databases |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | the use of basic string manipulation                                                                                         | Strings and lists                                    |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Additional<br>programming<br>techniques              | the use of records to store data                                                                                             | Dictionaries and datafiles<br>Strings and lists      |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |
| 2.2 -<br>Programming<br>fundamentals | Data types                                           | the use of data types:<br>- integer<br>- real<br>- Boolean<br>- character and string<br>- casting                            | Sequence                                             |            |          |                   |              |                  |          |          |               |          |           |          |             |           |                               |                                |


|                                          |                             |                                                                                                                                                                                        |                                                    | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | mpacts of<br>technolog | letworks | Security | Databases and SC | Sequence | Selection | teration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|-----------------|-------------------|--------------|------------------------|----------|----------|------------------|----------|-----------|----------|-------------|-------------------|----------------------------|--------------------------------|
| Specification                            | Sub-topic                   | To know and understand:                                                                                                                                                                | Units                                              | Alg          | Cor             | Dat               | Alg          | lmp                    | Net      | Sec      | Dat              | Seq      | Sele      | Itera    | Sub         | Stri              | Dict                       | Obj<br>pro                     |
| 2.2 -<br>Programming<br>fundamentals     | Programming fundamentals    | the common arithmetic operators                                                                                                                                                        | Selection                                          |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.2 -<br>Programming<br>fundamentals     | Programming fundamentals    | the common Boolean operators AND, OR and NOT                                                                                                                                           | Selection                                          |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.2 -<br>Programming<br>fundamentals     | Programming<br>fundamentals | the use of the three basic programming<br>constructs used to control the flow of a<br>program:<br>- sequence<br>- selection<br>- iteration (count- and condition-<br>controlled loops) | Iteration, Programming I<br>Selection,<br>Sequence |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.2 -<br>Programming<br>fundamentals     | Programming fundamentals    | the use of variables, constants, operators, inputs, outputs and assignments                                                                                                            | Selection, Sequence,<br>Subroutines                |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Defensive<br>design         | defensive design considerations:<br>- anticipating misuse<br>- authentication                                                                                                          | Dictionaries and datafile                          |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Defensive<br>design         | Input validation                                                                                                                                                                       | Iteration, Sequence                                |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Defensive<br>design         | Maintainability:<br>- Use of sub programs<br>- Naming conventions<br>- Indentation<br>- Commenting                                                                                     | Sequence                                           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | identify syntax and logic errors                                                                                                                                                       | Sequence                                           |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | Refining algorithms                                                                                                                                                                    | Dictionaries and datafile                          |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs | Testing                     | selecting and using suitable test data:<br>- Normal<br>- Boundary<br>- Invalid<br>- Erroneous                                                                                          | Subroutines                                        |              |                 |                   |              |                        |          |          |                  |          |           |          |             |                   |                            |                                |

| Specification                                                                         | Sub-topic                                                | To know and understand:                                                                                                                                                     | Units                                     | Algorithms 1 | Computer System | Data Representati | Algorithms 2 | Impacts of<br>technolog | Networks | Security | Databases and SC | Sequence | Selection | Iteration | Subroutines | Strings and lists | Dictionaries and datafiles | Object-oriented<br>programming |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-----------------|-------------------|--------------|-------------------------|----------|----------|------------------|----------|-----------|-----------|-------------|-------------------|----------------------------|--------------------------------|
| 2.3 -<br>Producing<br>robust<br>programs                                              | Testing                                                  | the purpose of testing                                                                                                                                                      | Subroutines                               |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.3 -<br>Producing<br>robust<br>programs                                              | Testing                                                  | types of testing:<br>- iterative<br>- final/terminal                                                                                                                        | Dictionaries and datafiles<br>Subroutines |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | applying logical operators in truth tables to solve problems                                                                                                                | Computer Systems                          |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | combining Boolean operators using AND, OR and NOT                                                                                                                           | Computer Systems                          |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | simple logic diagrams using the operators AND, OR and NOT                                                                                                                   | Computer Systems                          |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.4 - Boolean<br>logic                                                                | Boolean logic                                            | truth tables                                                                                                                                                                | Computer Systems,<br>Subroutines          |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | Characteristics and purpose of different<br>levels of programming language:<br>- High-level languages<br>- Low-level languages                                              | Computer Systems,<br>Sequence             |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | the characteristics of a compiler and an interpreter                                                                                                                        | Sequence                                  |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | Languages                                                | the purpose of translators                                                                                                                                                  | Sequence                                  |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |
| 2.5 -<br>Programming<br>languages<br>and<br>Integrated<br>Development<br>Environments | The<br>Integrated<br>Development<br>Environment<br>(IDE) | common tools and facilities available in<br>an integrated development environment<br>(IDE):<br>- editors<br>- error diagnostics<br>- run-time environment<br>- translators. | Sequence                                  |              |                 |                   |              |                         |          |          |                  |          |           |           |             |                   |                            |                                |

## **Progression Model**

This model below demonstrates how the Units at KS3 feed the Units at GCSE and exemplifies the importance of progression through learning foundation concepts.

# **Computer Science Progression Model**



## **Assessment Policy**

The Computing assessment policy aims to ensure we have a balance between curriculum coverage and assessment, which ought to support student progress through a recognition of achievement and reflection upon areas for improvement.

Although it is important to use a range of assessment methods, a great deal of what we do in Computing is practical and therefore verbal feedback is a consistent feature of lessons.

Computational thinking and Problem solving are key features of all units of work across the department. Computational thinking can be assessed in a variety of ways; however, the clearest model is to assess the planning phase for any solution as this can highlight a weakness in sequence, selection, or iteration within an algorithm. Errors in these areas will demonstrate a weakness in logic within the solution which will lead to failures when programmed. Students can develop algorithms as electronic or analogue documents using flow diagrams or pseudocode. Assessment of these artefacts will help to improve student's success at the development stages when learning to program.

#### **Formative assessment**

Every lesson includes formative assessment opportunities for teachers to use. These opportunities are listed in the Medium-Term Plans and are included to ensure that misconceptions are recognised and addressed if they occur. They vary from teacher observation or questioning, to marked activities.

These assessments are vital to ensure that teachers are adapting their teaching to suit the needs of the pupils that they are working with. Any adaptation needs to be noted in the Medium-Term Plans.

The learning objectives are introduced in the slides or OneNote files at the beginning of every lesson. Every lesson has a starter activity and a plenary that can be used as an opportunity for formative assessment.

#### Summative assessment

Every unit includes an optional summative assessment framework in the form of either a multiple-choice quiz (MCQ) or a rubric. All units are designed to cover both skills and concepts from across the computing national curriculum. Units that focus more on conceptual development include an MCQ. Units that focus more on skills development end with a project and include a rubric. However, within the 'Programming' units, the assessment framework (MCQ or rubric) has been selected on a best-fit basis.

#### Multiple choice quiz (MCQ)

Each of the MCQ questions has been carefully chosen to represent learning that should have been achieved within the unit. In writing the MCQs, we have followed the diagnostic assessment approach to ensure that the assessment of the unit is useful to determine both how well pupils have understood the content, and what pupils have misunderstood, if they have not achieved as expected.

Each MCQ includes an answer sheet that highlights the misconceptions that pupils may have if they have chosen a wrong answer. This ensures that teachers know which areas to return to in later units.

#### **Rubrics**

The rubric is a tool to help teachers assess project-based work. Each rubric covers the application of skills that have been directly taught across the unit, and highlights to teachers whether the pupil is approaching (WT), achieving (ARE), or exceeding the expectations (AGD) for their age group. It allows teachers to assess projects that pupils have created, focussing on the appropriate application of computing skills and concepts.

Pedagogically, we want to ensure that we are assessing pupils' understanding of computing concepts and skills, as opposed to their reading and writing skills. This has been carefully considered both in how MCQs have been written (considerations such as the language used, the cultural experiences referenced, etc) and in the skills expected to be demonstrated in the rubric.

#### **Student Accountability**

Students on GCSE courses will be provided with PLC's which they must complete every time they complete a quiz. This ensures they are tracking their own progress and can identify areas which need greater focus. The PLC's also provide an area for students to write a short reflection about their learning and to describe their own next steps

# Progression Pathways KS3

| PP | Algorithms                                                                                                                                                                                                                                                                                                                   | Programming & Development                                                                                                                                                                                                                                                                                                                                | Data & Data Representation                                                                                                                                                                                                                                                                                           | Hardware & Processing                                                                                                                                                                                                                                                         | <b>Communications &amp; Networks</b>                                                                                                                                                                                                                                                                                                                                       | Digital: Creativity & Citizens                                                                                                                                                                                                                                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Understands that algorithms are<br>implemented on digital devices as programs.<br>Designs simple algorithms using loops and<br>selection i.e. if statements. Use logical<br>reasoning to predict outcomes. Detects and<br>correct errors i.e. debugging algorithms.                                                          | Uses arithmetic operators, if statements<br>and loops within programs. Use logical<br>reasoning to predict the behaviour or<br>programs. Detects and corrects simple<br>semantic errors i.e. debugging in programs                                                                                                                                       | Recognises different types of data: text,<br>number. Appreciates that programs can<br>work with different types of data.<br>Recognises that data can be structured in<br>tables to make it useful.                                                                                                                   | Recognises that a range of digital<br>devices can be considered a computer.<br>Recognises and can use a range of input<br>and output devices. Understands how<br>programs specify the function of a<br>general-purpose computer.                                              | Navigates the WWW can carry out simple<br>searches to collect digital content.<br>Demonstrates sue of computers safely and<br>responsibly, knowing a range of ways to<br>report unacceptable content and contact<br>when online.                                                                                                                                           | Uses technology purposefully to organise digital<br>content. Uses a variety of software to assess,<br>manipulate and present digital content and<br>information. Shares their experiences of IT<br>beyond the classroom. Talks about their work<br>and makes improvements based on feedback.                                                                                                      |
| 3  | Designs solutions (algorithms) and two-way<br>selection i.e. IF, THEN and ELSE statements.<br>Uses diagrams to express solutions. Uses<br>logical reasoning to predict outputs, showing<br>and awareness of inputs.                                                                                                          | Creates programs that implement<br>algorithms to achieve given goals. Declares<br>and assigns variables. Uses post-tested loop<br>e.g. until and a sequence of selection<br>statements in programs, including an IF,<br>THEN and ELSE statement.                                                                                                         | Understand the difference between data<br>and information. Knows why sorting data in<br>a flat file can improve searching for<br>information. Uses filters or can perform<br>single criteria searches.                                                                                                               | Knows that computers collect data from<br>various input devices, including sensors<br>and applications. Understands the<br>difference between hardware and<br>application software, and their roles in a<br>computer system.                                                  | Understands the difference between the<br>internet and WWW. Shows an awareness<br>of and can use a range of internet services<br>e.g. VOIP. Recognises what is acceptable<br>and unacceptable behaviour when using<br>technologies and online services.                                                                                                                    | Collects and Creates digital content to achieve a<br>given goal through combining software<br>packages and internet services to communicate<br>with a wider audience. Makes appropriate<br>improvement to solutions based on feedback<br>and can comment on the success of the solution.                                                                                                          |
| 4  | Shows an awareness of tasks best completed<br>by humans or computers. Designs solutions by<br>decomposing a problem and creates a sub-<br>solution for each of these parts<br>(decomposition). Recognises that different<br>solutions exist for the same problem.                                                            | Understands IF and IF, THEN and ELSE<br>statements. Uses a variable and relational<br>operator within a loop. Designs, writes and<br>debugs modular programs. Knows that a<br>procedure can be used to hide detail within<br>a sub-solution (procedural abstraction).                                                                                    | Performs more complex searches for<br>information e.g. using Boolean and<br>relational operators. Analyses and evaluates<br>data and information and recognises that<br>poor quality data needs leads to unreliable<br>results and inaccurate conclusions.                                                           | Understands why and when computers<br>are used. Understands the main<br>functions of the operating system.<br>Knows the difference between physical,<br>wireless and mi=mobile networks.                                                                                      | Understands how to effectively use<br>searching engines, and knows how search<br>results are selected, including that search<br>engines use web crawler programs.<br>Demonstrates responsible use of<br>technologies and online services and knows<br>a range of ways to report concerns.                                                                                  | Makes judgements about digital content when<br>evaluating and repurposing it for a given<br>audience. Understands the potential of IT for<br>collaboration when computers are networked.<br>Uses criteria to evaluate the quality of solutions,<br>can identify and make some refinements to the<br>solution.                                                                                     |
| -  | Understands that iteration is the repetition of<br>a process such as a loop. Recognises that<br>different algorithms exist for the same<br>problem. Represents solutions using a<br>structured notation. Can identify similarities<br>and differences in situations using these to<br>solve problems (pattern recognition).  | high-level language. Uses a range of<br>operators and expressions e.g. Boolean and<br>applies them in the context of program                                                                                                                                                                                                                             | Knows that computers use binary to<br>represent data. Understands how bit<br>patterns represent numbers and images.<br>Understands the relationship between<br>binary and file size (uncompressed). Defines<br>data types: real numbers and Boolean.<br>Queries data on one table using a typical<br>query language. | Recognises and understands the<br>function of the main internal parts of<br>basic computer architecture.<br>Understands the concepts behind the<br>fetch-execute cycle. Knows that there is<br>a range of operating systems and<br>application software for some<br>hardware. | Understands how search engines rank<br>search results. Understands how to<br>construct static web pages using HTML and<br>CSS. Understands transmission between<br>digital computers over networks, including<br>the internet i.e. IP addresses and packet<br>switching.                                                                                                   | Evaluates the appropriateness of digital devices,<br>internet services and application software to<br>achieve given gaals. Recognises ethical issues<br>surrounding the application of IT beyond school.<br>Designs and uses criteria to critically evaluate<br>the quality of solutions in order to make<br>appropriate solutions.                                                               |
| 6  | Recognises that some problems share the<br>same characteristics and use the same<br>algorithm to solve both (generalisation).<br>Understands the notion of performance for<br>algorithms and appreciates that some<br>algorithms have different performance<br>characteristics.                                              | Uses nested selection statements.<br>Appreciates the need for and writes custom<br>functions using parameters. Appropriately<br>uses procedures and functions. Understands<br>and uses negation with operators. Uses and<br>manipulates a one-dimensional data<br>structure. Detects and corrects syntactical<br>errors.                                 | Understands how numbers, images, sounds<br>and character sets use the same bit<br>patterns. Understands the relationship<br>between resolution and colour depth,<br>including the effect on file size. Distinguishes<br>between data used in simple programs (a<br>variable) and the storage for that data.          | Understand the Von Neumann<br>architecture in relation to the fetch-<br>decode-execute cycle, including how<br>data is stored in memory. Understands<br>the basic function and operation of<br>location addressable memory.                                                   | Knows the names of hardware e.g. hubs,<br>routers, switches, and the names of<br>protocols e.g. SMTP, IMAP, POP, FTP,<br>TCP/IP, ossociated with networking<br>computer systems. Uses technologies and<br>online services securely and knows how to<br>identify and report concerns.                                                                                       | Justifies uses multiple digital devices, internet<br>services and application software to achieve<br>given goals. Evaluates the validity of digital<br>content and assess the usability of design<br>features when developing content for a given<br>audience. Develops criteria to evaluate the<br>quality of solutions using feedback from several<br>sources to identify and make improvement. |
| 7  | Recognises that the design of an algorithm is<br>distinct from its expression. Evaluates the<br>effectiveness of algorithms and models for<br>similar problems. Recognises where<br>information can be filtered out in generalising<br>solutions (abstraction). Uses logical reasoning<br>to explain how an algorithm works. | Appreciates the effect of the scope of a<br>variable e.g. a local variable can't be<br>accessed from outside its function.<br>Understands and applies parameter<br>passing. Understands the difference<br>between and uses both pre-tested (While)<br>and post tested loops (Until). Applies a<br>modular approach to error detection and<br>correction. | Knows the relationship between data<br>representation and data quality.<br>Understands the relationship between<br>binary and electrical circuits, including<br>Boolean logic. Understands how and why<br>values are data typed in many different<br>languages when manipulated within<br>programs.                  | Knows that processors have instruction<br>sets and that these relate to low-level<br>instructions carried out by a computer.                                                                                                                                                  | Knows the purpose of hardware and<br>protocols associated with networking<br>computer systems. Understands the client-<br>server model including how dynamic<br>webpages use server-side scripting and<br>that webservers process and store data.<br>Recognises that persistence of data on the<br>internet requires careful protection of<br>online identity and privacy. | Undertakes creative projects that collect,<br>analyse, and evaluate data to meet the needs of<br>a known user group. Considers the properties of<br>media when importing them into digital<br>artefacts, develops success criteria and Collects<br>user feedback in order to make appropriate<br>refinements.                                                                                     |

# Progression Pathways KS4

| Grade | Algorithms                                                                                                                                                                                                                                                                                                                  | Programming & Development                                                                                                                                                                                                                                                                                                                          | Data & Data Representation                                                                                                                                                                                                                                                                                           | Hardware & Processing                                                                                                                                                                                                                                                      | Communications & Networks                                                                                                                                                                                                                                                                                                                             | Digital: Creativity & Citizens                                                                                                                                                                                                                                                                                                                                                    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | Designs solutions (algorithms) and two-way<br>selection i.e. IF, THEN and ELSE statements.<br>Uses diagrams to express solutions. Uses<br>logical reasoning to predict outputs,<br>showing and awareness of inputs.                                                                                                         | Creates programs that implement algorithms<br>to achieve given goals. Declares and assigns<br>variables. Uses post-tested loop e.g. until and<br>a sequence of selection statements in<br>programs, including an IF, THEN and ELSE<br>statement.                                                                                                   | Understand the difference between data<br>and information. Knows why sorting data in<br>a flat file can improve searching for<br>information. Uses filters or can perform<br>single criteria searches.                                                                                                               | Knows that computers collect data<br>from various input devices, including<br>sensors and applications.<br>Understands the difference between<br>hardware and application software,<br>and their roles in a computer.                                                      | Understands the difference between the<br>internet and internet service e.g. WWW.<br>Shows an awareness of and can use a range<br>of internet services e.g. VOIP. Recognises<br>what is acceptable and unacceptable<br>behaviour when using technologies and online<br>services.                                                                      | Collects and Creates digital content to achieve a<br>given goal through combining software<br>packages and internet services to communicate<br>with a wider audience. Makes appropriate<br>improvement to solutions based on feedback<br>and can comment on the success of the solution.                                                                                          |
| 4     | Shows an awareness of tasks best completed<br>by humans or computers. Designs solutions<br>by decomposing a problem and creates a<br>sub-solution for each of these parts<br>(decomposition). Recognises that different<br>solutions exist for the same problem.                                                            | Understands IF and IF, THEN and ELSE<br>statements. Uses a variable and relational<br>operator within a loop. Designs, writes and<br>debugs modular programs. Knows that a<br>procedure can be used to hide detail within a<br>sub-solution (procedural abstraction).                                                                              | Performs more complex searches for<br>information e.g. using Boolean and<br>relational operators. Analyses and evaluates<br>data and information and recognises that<br>poor quality data needs lead to unreliable<br>results and inaccurate conclusions.                                                            | Understands why and when<br>computers are used. Understands the<br>main functions of the operating<br>system. Knows the difference<br>between physical, wireless and<br>mi=mobile networks.                                                                                | Understands how to effectively use searching<br>engines, and knows how search results are<br>selected, including that search engines use<br>web crawler programs. Demonstrates<br>responsible use of technologies and online<br>services and knows a range of ways to report<br>concerns.                                                             | Makes judgements about digital content when<br>evaluating and repurposing it for a given<br>audience. Understands the potential of IT for<br>collaboration when computers are networked.<br>Uses criteria to evaluate the quality of solutions,<br>can identify and make some refinements to the<br>solution.                                                                     |
| 5     | Understands that iteration is the repetition<br>of a process such as a loop. Recognises that<br>different algorithms exist for the same<br>problem. Represents solutions using a<br>structured notation. Can identify similarities<br>and differences in situations using these to<br>solve problems (pattern recognition). | Understands that programming bridges the<br>gap between algorithmic solutions and<br>computers. Has practical experience of a<br>high-level language, using standard libraries.<br>Uses a range of operators and expressions<br>e.g. Boolean and applies them in the context<br>of program using appropriate data types.                           | Knows that computers use binary to<br>represent data. Understands how bit<br>patterns represent numbers and images.<br>Understands the relationship between<br>binary and file size (uncompressed). Defines<br>data types: real numbers and Boolean.<br>Queries data on one table using a typical<br>query language. | Recognises and understands the<br>function of the main internal parts of<br>a computer architecture.<br>Understands the concepts behind the<br>fetch- execute cycle. Knows that<br>there is a range of operating systems<br>and application software for some<br>hardware. | Understands how search engines rank search<br>results. Understands how to construct static<br>web pages using HTML and CSS. Understands<br>transmission between digital computers over<br>networks, including the internet i.e. IP<br>addresses and packet switching.                                                                                 | Evaluates the appropriateness of digital devices,<br>internet services and application software to<br>achieve given goals. Recognises ethical issues<br>surrounding the application of IT beyond school.<br>Designs and uses criteria to critically evaluate<br>the quality of solutions in order to make<br>appropriate solutions.                                               |
| 6     | Recognises that some problems share the<br>same characteristics and use the same<br>algorithm to solve both (generalisation).<br>Understands the notion of performance for<br>algorithms and appreciates that some<br>algorithms have different performance<br>characteristics.                                             | Uses nested selection statements.<br>Appreciates the need for and writes custom<br>functions using parameters. Appropriately<br>uses procedures and functions. Understands<br>and uses negation with operators. Uses and<br>manipulates a one-dimensional data<br>structure. Detects and corrects syntactical<br>errors.                           | Understands how numbers, images, sounds<br>and character sets use the same bit<br>patterns. Understands the relationship<br>between resolution and colour depth,<br>including the effect on file size. Distinguishes<br>between data used in simple programs (a<br>variable) and the storage for that data.          | Understand the Von Neumann<br>architecture in relation to the fetch-<br>decode-execute cycle, including how<br>data is stored in memory.<br>Understands the basic function and<br>operation of location addressable<br>memory.                                             | Knows the names of hardware e.g. hubs,<br>routers, switches, and the names of protocols<br>e.g. SMTP, iMAP, POP, FTP, TCP/IP, associated<br>with networking computer systems. Uses<br>technologies and online services securely and<br>knows how to identify and report concerns.                                                                     | Justifies uses multiple digital devices, internet<br>services and application software to achieve<br>given goals. Evaluates the validity of digital<br>content and the usability of design features<br>when developing content for a given audience.<br>Develops criteria to evaluate the quality of<br>solutions using feedback from several sources to<br>identify and improve. |
| 7     | Recognises that the design of an algorithm is<br>distinct from its expression. Evaluates the<br>effectiveness of algorithms and models for<br>similar problems. Recognises where<br>information can be filtered out (abstraction).<br>Uses logical reasoning to explain how an<br>algorithm works.                          | Appreciates the effect and scope of a variable<br>e.g. a local variable can't be accessed from<br>outside its function. Understands and applies<br>parameter passing. Understands the<br>difference between and uses both pre-tested<br>(While) and post tested loops (Until). Applies<br>a modular approach to error detection and<br>correction. | Knows the relationship between data<br>representation and data quality.<br>Understands the relationship between<br>binary and electrical circuits, including<br>Boolean logic. Understands how and why<br>values are data typed in many different<br>languages when manipulated within<br>programs.                  | Knows that processors have<br>instruction sets and that these relate<br>to low-level instructions carried out<br>by a computer.                                                                                                                                            | Knows the purpose of hardware and protocols<br>associated with networking. Understands the<br>client-server model including how dynamic<br>webpages use server-side scripting and that<br>webservers process and store data.<br>Recognises that persistence of data on the<br>internet requires careful protection of online<br>identity and privacy. | Undertakes creative projects that collect,<br>analyse, and evaluate data to meet the needs of<br>a known user group. Considers the properties of<br>media when importing them into digital<br>artefacts, develops success criteria and Collects<br>user feedback in order to make appropriate<br>refinements.                                                                     |
| 8     | Designs a solution to a problem that<br>depends on solutions to smaller instances of<br>the same problem (recursion).Understands<br>that some problems cannot be solved<br>computationally.                                                                                                                                 | Designs and writes nested modular programs<br>that enforce reusability utilising sub-routines<br>wherever possible. Understands the<br>difference between 'While' loop and 'For'<br>loop, which uses a loop counter.<br>Understands and uses two-dimensional data<br>structures.                                                                   | Performs operations using bit patterns e.g.<br>conversion between binary and<br>hexadecimal, binary subtraction etc. Can<br>explain the need for data compression.<br>Knows what a relational database is and<br>understands the benefits of storing data in<br>multiple tables.                                     | Has practical experience of a small<br>(hypothetical) low level programming<br>language.<br>Understands and can explain<br>Moore's Law. Understands and can<br>explain multitasking by computers.                                                                          | Understands the hardware associated with<br>networking computer systems, including<br>WANs and LANs, understands their purpose<br>and how they work, including MAC addresses.                                                                                                                                                                         | Understands the ethical issues surrounding the<br>application of information technology, and the<br>existence of legal frameworks governing its use<br>e.g. Data Protection Act, Computer Misuse Act,<br>Copyright etc.                                                                                                                                                           |

## **Homework Policy**

The Computing Department embrace homework as a useful tool for securing mastery of key skills and knowledge and to develop students' independent learning in preparation for revision and GCSE. All students are encouraged to, and re-taught how to, revise in the lead up to testing weeks and mock weeks.

#### Years 7, 8 and 9

In years 7, 8 and 9, students are set homework weekly. This homework is carefully designed to:

- Prepare students for future learning, such as pre-reading,
- Secure and embed learning that has taken place in the classroom,
- Develop students' ability to work independently,
- Allow students the opportunity to complete extended projects,
- Develop their cultural literacy
- Apply the skills learnt in the classroom to extended tasks, such as longer essay writing
- Prepare and revise for testing

#### Years 7 & 9

Every Monday Week A, students are set a multiple-choice quiz via Microsoft Forms, which will link to current and prior learning. Week B homework is 'For the love of' which investigates wider aspects of computing and helps students draw links between classwork and the real world.

#### Year 8

Every Monday Week B, students are set a multiple-choice quiz via Microsoft Forms, which will link to current and prior learning. Week A homework is 'For the love of' which investigates wider aspects of computing and helps students draw links between classwork and the real world.

#### 'For the love of'

Once completed, homework is celebrated, shared or used in class. Great examples of homework are further celebrated by being displayed on walls and in assembly. Students learn, practise and revise key spellings as part of their homework to support the accuracy of their written responses and to secure their knowledge of key spelling rules.

#### Year 10 and 11

Every Monday Week A, students are set a multiple-choice quiz via Microsoft Forms, which will link to current and prior learning. Week B homework is tailored by the individual class teacher to suit their class's particular needs. Students in years 10 and 11 are set weekly revision challenges to support their understanding of the GCSE exam questions with a focus on extended writing. These include:

- Redrafting content produced in class in response to feedback
- Drafting and completing coursework or programming assignments
- Preparing for programming assessments
- Accessing content on GCSE Pod
- Completing learning cycles and quizzes on SENECA
- Reading critical theory linked to their GCSE texts

Students will complete homework in via MS Teams and OneNote so that this can be used in lessons and to promote the use of homework as an ongoing learning tool to support what is happening in the classroom.

Impact of homework is reviewed half termly by the homework lead to ensure it is of a high quality, is useful to the student and their learning, is valued and is being set consistently.

## **Period 6 Expectations**

All teachers will run period 6 sessions for their KS4 classes, and invite KS3 students to period 6, on the following afternoons: Year 11: Monday Year 10: Wednesday Year 7-9: Thursday

Teachers are expected to analyse their own class data after each key assessment entry and use this to inform the focus of their period 6 sessions and the students to be invited.

The year 11 students targeted for priority intervention must be targeted through period 6 sessions as well as in-class intervention where appropriate. The intention of period 6 sessions is that small numbers of students are targeted to ensure a tight focus on mastery of skills. Sessions should be structured to allow for clear, measurable progress, with the first session requiring students to complete a pre-assessment task (this may be the mock exam if students have recently completed one) and the final session requiring students to complete a final assessment task. Both of these should be marked by the period 6 teacher to provide them with a clear overview of student needs and to identify where progress has been made.

The use of Threshold Testing in year 11 will identify students requiring intervention and those not achieving 65% in the assessment will be required to attend catch-up and resit the threshold test.

Students should be focused and on task during period 6 sessions, as they would be within a typical Computing lesson. Teachers are encouraged to use the rewards and consequence system as they would in an ordinary lesson. All teachers must update the period 6 register each afternoon so that the impact of these sessions can be analysed.

Sessions may be delivered across mixed groups with individual teachers focusing on different skills for mastery. This will be decided as data trends appear throughout the year.

Red Lines (these are likely to change in view of Great Learners and will be revised)

Red Lines are whole school minimum expectations to ensure quality teaching and learning consistently take place. Do

**Do Now Task**: This is a task that takes place at the start of the lesson and is used to embed prior learning or introduce new learning. For KS3, this may be recapping knowledge, retrieval practice, prediction for a piece of code. For KS4, this consists of a low stakes quiz interleaving the skills and knowledge for GCSE. This may be a question and answer-based quiz, a connections map, retrieval practice.

**Directed Questioning**: In all cases, students are required to respond formally during directed questioning, wording their response precisely and with appropriate subject terminology. Teachers model this to students, support students in refining their responses and insist on responses being repeated appropriately.

**Modelling**: All assessment tasks are completed by the teacher, to the highest standard expected of the class, prior to teaching. Models are used within the scheme of learning to exemplify expectations to students. Live modelling is integral to the high-quality teaching and learning that takes place within the department. In many cases this will be delivered using screen sharing with teachers modelling metacognition, outcomes, processes and approaches to tasks, and deconstructing student and existing responses.

**Oral Rehearsal**: Students are expected to discuss their responses to questions before they are shared as a class to ensure responses are well-considered, developed and refined. Full sentences are expected with technical vocabulary.

**Take 5**: In all lessons, students independently complete the 'Summary/Questions' box on OneNote and complete a self-assessment. This may be to summarise learning, respond to key questions, ask their own questions or to complete another plenary task to demonstrate their learning and future needs. Take 5 may not necessarily take place at the end of the lesson, but at a convenient point to assess the learning so far.

**Assessment for Learning** (AFL): As part of the department assessment policy, AFL takes place within lessons as part of in-flight marking and feedback. Students' learning is regularly assessed through questioning, summarising and 'Take 5' tasks, live marking and conversations with students. Screen sharing is used to show student work in a live setting for teachers or students to exemplify effective features and explore how to improve assignments. Whole class feedback is used to exemplify great examples to students, highlight common errors and areas to improve, and inform next steps in teaching.

**DIRT:** students are expected to reflect on what they have done to improve their work and how. This can also incorporate peer assessment and feedback.

**Students Read Aloud**: Students are expected to read aloud to the teacher, in groups or to the whole class. Teachers use this as an opportunity to assess reading fluency.

**Teachers Model Reading**: Teachers model reading especially complex texts which students are expected to follow. This ought to be followed up by Direct Questioning.

# **Vocabulary Glossary**

### Core

| Keyword                        | Definition                                                                                                                                                                                                                         |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Systems Architecture           |                                                                                                                                                                                                                                    |
| СРИ                            | Central Processing Unit The "brain" of the computer                                                                                                                                                                                |
| CU                             | Control Unit Part of the CPU that manages the functions of all other parts of the CPU                                                                                                                                              |
| Decoder                        | Part of the CU which decodes the binary instructions fetched from memory                                                                                                                                                           |
| RAM                            | Random Access Memory - The main volatile memory into which programs are loaded from the hard drive                                                                                                                                 |
| MAR                            | Memory Address Register - Small fast memory used to store the RAM address of the next instruction                                                                                                                                  |
| MDR                            | Memory Data Register - Small, fast memory used to store the information collected from the RAM before processing                                                                                                                   |
| PC                             | <i>Program Counter - Keeps track of the current instruction number of the program</i>                                                                                                                                              |
| Accumulator                    | Small, fast memory, used to keep track of the data currently being processed                                                                                                                                                       |
| ALU                            | Arithmetic and Logic Unit - Does the basic mathematics and comparisons during processing                                                                                                                                           |
| Bus                            | A physical connection between two elements of a computer system that allows the transfer of data.                                                                                                                                  |
| Cache                          | Incredibly fast, but very expensive volatile memory using in the CPU                                                                                                                                                               |
| Bridge (North / South)         | Junctions on a motherboard where the bus connections are controlled<br>and routed. Northbridge deals with core functions, whilst the<br>Southbridge deals with the peripherals, input and output devices and<br>Secondary Storage. |
| von Neumann Architecture       | The method used by all modern computers to allow the programming of a machine to be changed depending on the required function.                                                                                                    |
| Fetch / Decode / Execute Cycle | Basis of the von Neumann architecture – the repeated process where instructions are fetched from RAM, decoded into tasks and data, then carried out.                                                                               |
| Clock Speed                    | The number of FDE cycles that a CPU can carry out per second.<br>Measured in Ghz.<br>(1 Ghz = 10 <sup>9</sup> cycles per second or 1,000,000,000hz)                                                                                |

| Cores             | Some processors have multiple CPUs which can work in parallel, sequentially or can multitask. Dual and Quad cores are common in modern PCs                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine Code      | A program, stored in binary, that the CPU undertakes the F-D-E cycle<br>on. All programs must be in machine code to work                                                                  |
| Instruction       | A single line of machine code, containing the command and data location on which it is to be executed. Stored in binary                                                                   |
| Opcode            | The first part of the instruction, is the command                                                                                                                                         |
| Operand           | The second part of the instruction is the data on which to carry out the command. This may be actual data stored in binary form, or a memory location reference of where to find the data |
| Memory            |                                                                                                                                                                                           |
|                   |                                                                                                                                                                                           |
| Volatile          | Memory which requires constant electrical charge. If the power is turned off, then the data is lost                                                                                       |
| Non-volatile      | Memory which can retain its data when the power is turned off                                                                                                                             |
| RAM               | Random Access Memory                                                                                                                                                                      |
| ROM               | Read-Only Memory                                                                                                                                                                          |
| Cache             | Very fast memory, on, or very close to the CPU                                                                                                                                            |
| Virtual Memory    | A section of the HDD which can be used as RAM for very memory intensive processes                                                                                                         |
| Flash Memory      | A type of dynamic (changeable) ROM                                                                                                                                                        |
| Boot Process      | The instructions needed to start the computer and to initialize the operating system.                                                                                                     |
| POST              | <i>Power On Startup Test</i><br>A series of checks done on the hardware of the computer to ensure the<br>machine can run.                                                                 |
|                   |                                                                                                                                                                                           |
| Storage           |                                                                                                                                                                                           |
| Secondary Storage | Primary storage is RAM. Secondary storage refers to long term, non-volatile data storage.                                                                                                 |
| Non-volatile      | Memory which can retain its data when the power is turned off                                                                                                                             |
| Magnetic          | Data is stored by altering the magnetic charge (+ or -) to represent binary information                                                                                                   |
| Optical           | A reflective layer or dye is marked to either reflect or not reflect a laser beam. The computer reads the reflections as binary data                                                      |

| Solid State               | Also known as <i>Flash Memory,</i> the data is stored by forcing (or flashing) electrons through a barrier into a storage layer. Here it is read as binary information     |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity                  | How much data will it need to hold?                                                                                                                                        |
| Speed                     | How quickly must the data be written / read?                                                                                                                               |
| Portability               | Does the storage device need to be transported?<br>If yes, then size, shape and weight are important. Will it require other<br>devices to be used (eg. An optical reader). |
| Durability                | How <i>robust is</i> the device? Can it be moved without fear of damage? Will it be used in a difficult environment? Does it need to be single use or rewritable?          |
| Reliability               | Does it need to be used repeatedly without failing, or will it receive minimal reuse? Will it need to store the information for long periods of time?                      |
| Cost                      | Needs to be compared with the above and considered.                                                                                                                        |
|                           |                                                                                                                                                                            |
| Wired & Wireless Networks |                                                                                                                                                                            |
| Stand Alone               | A single machine, not connected to another                                                                                                                                 |
| Network                   | A collection of machines which can communicate with one another                                                                                                            |
| Transparent               | The end-user has no need to know the specifics of a network's infrastructure                                                                                               |
| Node                      | A device on a network (PC or other device)                                                                                                                                 |
| Link                      | The connections between nodes                                                                                                                                              |
| LAN                       | Local Area Network (Single location)                                                                                                                                       |
| WAN                       | Wide Area Network (Multiple connected locations)                                                                                                                           |
| VPN                       | Virtual Private Network                                                                                                                                                    |
| UTP                       | Unshielded Twisted Pair – a type of cable                                                                                                                                  |
| Client                    | The user machines on a network                                                                                                                                             |
| Server                    | The central 'controller' machine on a network, including main data storage                                                                                                 |
| P2P                       | Peer-2-Peer. A network without a server.                                                                                                                                   |
| WAP                       | Wireless Access Point                                                                                                                                                      |
| NIC                       | Network Interface Controller                                                                                                                                               |
| Router                    | Controls the sending of data around a network                                                                                                                              |

| Hub                  | A central connection for a small network, which broadcasts all data to all clients                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switch               | A smart hub for larger networks which only sends the data to the intended client                                                                                                               |
| Internet             | A worldwide collection of networks                                                                                                                                                             |
| DNS                  | Domain Name Server                                                                                                                                                                             |
| Hosting              | Storing a file on a web-server for access via the internet                                                                                                                                     |
| Cloud                | A service which is stored remotely                                                                                                                                                             |
| Networks & Protocols |                                                                                                                                                                                                |
| TCP/IP               | Transmission Control Protocol / Internet Protocol.<br>These are the standards that allows network nodes to communicate<br>with one another on the internet                                     |
| www                  | World Wide Web - Pages of content                                                                                                                                                              |
| email                | Electronic mail, sent through the internet                                                                                                                                                     |
| URL                  | Unique Resource Location                                                                                                                                                                       |
| Protocol             | The rules and standards that are agreed in order to make it possible for different devices to talk to one another                                                                              |
| IP Address           | Each node on a network is given a unique 32 bit address (4x8bits) for example 192.168.0.1 There are 4 billion possible combinations.                                                           |
| DHCP                 | Dynamic Host Configuration Protocol – this protocol allows the network server to control the allocation of IP addresses                                                                        |
| MAC Address          | Media Access Control                                                                                                                                                                           |
|                      | Unique addresses hard coded into the network interface controller.<br>Gives the manufacturer, NIC type and unique identifying number. 48<br>bits displayed as Hex (eg 01-23-45-67-89-ab-cd-ef) |
| TCP/IP               | A set of protocols that governs the transfer of data over a network                                                                                                                            |
| НТТР                 | Standards for writing webpages to display content for display                                                                                                                                  |
| HTTPS                | Client-server protocol for requesting (client) and delivering (server) resources, such as HTML, securely                                                                                       |
| FTP                  | Used to directly send files from one node to another over the internet.<br>Commonly used for uploading files to webservers                                                                     |
| РОР                  | Used by email clients to download email from the remote email server<br>and save it onto the users computer. More or less redundant now, and<br>has been replaced by IMAP                      |

| ΙΜΑΡ                     | An alternative to POP, allowing more control such as the complete control of remote mailboxes                                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMTP                     | An old standard for transmission of email. SMTP can only be used to <i>push</i> mail to client machines, whilst both POP and IMAP ae used by clients to <i>retrieve</i> mail.                                                                                                                            |
| Protocol                 | The rules and standards that are agreed in order to make it possible for different devices to talk to one another                                                                                                                                                                                        |
| Layering                 | Rules organised into a distinct order in which they need to be applied                                                                                                                                                                                                                                   |
| Interoperability         | The ability for different systems and software to communicate, exchange data and use the information exchanged                                                                                                                                                                                           |
| Encapsulation            | Enclosing data inside another data structure to form a single component                                                                                                                                                                                                                                  |
| De-encapsulation         | Removing data from inside and encapsulated item.                                                                                                                                                                                                                                                         |
|                          |                                                                                                                                                                                                                                                                                                          |
| Systems Security         |                                                                                                                                                                                                                                                                                                          |
| Hacking                  | Attempting to bypass a system's security features to gain unauthorised access to a computer                                                                                                                                                                                                              |
| Malware                  | Malware is malicious software, loaded onto a computer with the intention to cause damage or to steal information. Viruses are a type of malware                                                                                                                                                          |
| Phishing                 | Phishing is a common way to try to steal information like passwords.<br>Emails are sent, requesting the user logs into a website, but the site is a<br>fake, and the users details are logged                                                                                                            |
| Social engineering       | People are the weakest point of any system. If a hacker can convince a user to give over their data, this is the easiest way into a secure system                                                                                                                                                        |
| Brute force attack       | Using and algorithm to try every possible combination of characters to 'guess' the users password.                                                                                                                                                                                                       |
| Data interception        | Data interception, or <i>Man in the Middle attacks</i> are hacks that use<br>'packet sniffer' software to look at every piece of data being<br>transmitted in the local area to find ones that meet the hacker's<br>criteria. Often done by creating 'fake' wireless networks to record users<br>details |
| SQL injection            | Using SQL statements to trick a database management system (DBMS) into providing large amounts of data to the hacker                                                                                                                                                                                     |
| Denial of Service Attack | Hackers flood a network with huge amounts of fake data and requests in an attempt to overload the system so that it crashes                                                                                                                                                                              |
| Penetration Testing      | Employing a <i>white hat hacker</i> to try to break into a system to test how good the security is. Any problems in the security can then be fixed before they become vulnerable to real attack                                                                                                          |

| Network forensics     | Network procedures that capture, record and analyse all network events to discover the source of security attacks                                                                                                                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network Policies      | Rules which govern how a network may be used – see over page                                                                                                                                                                                                                                                                |
| Anti-malware software | Software which analyses files, network traffic and incoming data to look<br>for known malware such as viruses or worms. An infected file is<br>quarantined, and either cleaned or securely deleted to prevent further<br>infection. Needs updating very regularly to ensure that the newest<br>malware is being checked for |
| Firewall              | A firewall protects a system by checking all incoming and outgoing network traffic is legitimate                                                                                                                                                                                                                            |
| User level access     | Limiting the access of a user by their requirements to carry out their job. An admin will have more rights than a student, for example. Often even admins do not give themselves full rights to prevent accidents and will instead have a <i>super-user</i> account that will be used only for special high level jobs.     |
| encryption            | Encoding all data with a secure private, asymmetric key system, so that if data is stolen, it cannot be read or used.                                                                                                                                                                                                       |
| Virus                 | A program designed to infect a computer, then copy itself. Requires human 'help'<br>to spread; usually through infected software being installed or spread through<br>unsecure removable media such as usb-drives                                                                                                           |
| Worm                  | A self-replicating program, which can run itself allowing it to spread very quickly                                                                                                                                                                                                                                         |
| Trojan Horse          | A program which disguises itself as legitimate software, and appears to perform one task, but is actually performing another                                                                                                                                                                                                |
| Ransomware            | Ransomware secretly encodes a users data and files, then offers to un-encode the files if a large amount of money is paid to the hacker                                                                                                                                                                                     |
| Rootkit               | A rootkit allows a hacker to gain full, and often repeated, control of a computer, including the host operating system, which helps the hacker avoid detection.                                                                                                                                                             |
| Network Policies      |                                                                                                                                                                                                                                                                                                                             |
| Acceptable Use        | Governs the general use of the computer system and equipment by employees. Usually limited to that which is required to carry out only the tasks that a user is employed to undertake                                                                                                                                       |
| Passwords             | Rules to ensure that passwords are strong enough to prevent guessing<br>or brute force attack - often requiring the use of upper- and lower-case<br>letters, numbers and special characters. Also, usually a minimum length<br>is required. Passwords usually have to be changed on a regular basis                         |
| Email                 | Governs what may and may not be sent by email                                                                                                                                                                                                                                                                               |
| Web Access            | The configuration of web browsers may limit the types and categories of website that can be accessed                                                                                                                                                                                                                        |
| Mobile Use            | What devices are and are not allowed to be used                                                                                                                                                                                                                                                                             |

| Remote Access                | Govern what can be accessed from outside the system, and what can only be accessed onsite                                                                                                                                                                                                                           |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wireless                     | Govern how wireless access points (WAPs) are secured, who has access, and under what circumstances                                                                                                                                                                                                                  |
| Software                     | Governs who can install software, and which users are able to use that software. May have different levels of access once inside the software                                                                                                                                                                       |
| Server                       | Rules about what services are provided by the institution and who may access data stored centrally and for what purposes                                                                                                                                                                                            |
| Back Up                      | Back up policy determines how frequently backups are undertaken, and<br>what type of back up (full, incremental, differential). It will also state<br>where the backup media must be stored and for how long. Often a full<br>weekly back up is required to be stored in a fire proof box in an offsite<br>location |
| Incident Response Plan       | Details what to do if something goes wrong, or if an attack is discovered.                                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                                                                                                                     |
| Systems Software             |                                                                                                                                                                                                                                                                                                                     |
| Operating systems (OS)       | Collections of programs that tell the computer hardware what to do.                                                                                                                                                                                                                                                 |
| User interface               | The means of communication between the user and the computer.<br>These are typically either <i>command line</i> or <i>GUI</i> .                                                                                                                                                                                     |
| Command Line                 | The simplest form of user interface where users type commands into a prompt                                                                                                                                                                                                                                         |
| Graphic User Interface (GUI) | Most modern computers have a GUI, which uses icons to represent the programs and files. The user runs the programs through a touchscreen or mouse-controlled pointer                                                                                                                                                |
| Voice Command                | Increasingly users can speak commands to devices such as Google<br>Home and Amazon's Alexa                                                                                                                                                                                                                          |
| Memory management            | The OS controls available memory, moving programs to and from secondary storage to RAM                                                                                                                                                                                                                              |
| Multitasking                 | Often users have more than 1 program running at once. Each CPU core<br>can only carryout 1 task at a time, but the OS alternates between the<br>programs to make it appear that multiple tasks are running<br>simultaneously                                                                                        |
| Peripheral management        | Computers must communicate with a range of external devices such as printers, monitors and scanners (peripherals). The OS uses <i>drivers</i> to correctly pass data to the device and ensure correct function.                                                                                                     |
| Drivers                      | A driver is a piece of software which provides communication between the CPU and a peripherals device                                                                                                                                                                                                               |

| User management                               | Multiple users can have accounts on the same computer, each with<br>their own files, settings and applications, protected with passwords. The<br>OS will ensure that only users who are granted permissions can use files<br>or programs belonging to other users.            |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File management                               | Computers store files and data in hierarchical folder systems. This is efficient and allows for quick navigation                                                                                                                                                              |
| Utilities                                     | Utility software supports the OS by performing a limited and specific task. They are used to manage specific actions of the system or undertake maintenance operations.                                                                                                       |
| Encryption software                           | In order to keep data secure, especially against outside threats, data<br>must be encrypted. Encryption software uses complex algorithms to<br>encode data so it cannot be read without the private access keys.                                                              |
| Disk Defragmentation                          | Over time, through multiple updates and saves, files will become split<br>up and distributed over the platters. It takes longer for the files to be<br>accessed, slowing the machine down. Defragmentation reorganises the<br>files' parts to bring them together. See fig 1. |
| Data Compressions                             | Allows files to be made smaller by removal of empty space or through compression algorithms (lossy or lossless) – see KO2.6b                                                                                                                                                  |
| Back Up                                       | In case of hardware failure or other computer problems, data should be copied to external media so that it can be restored if lost or damaged.                                                                                                                                |
| Antivirus                                     | Continually scans the system to find, quarantine, and clean any file infected with viruses.                                                                                                                                                                                   |
| Anti-malware                                  | Continually scans to identify any malicious software from being introduced to the system.                                                                                                                                                                                     |
|                                               |                                                                                                                                                                                                                                                                               |
| Ethical, Legal, Cultural and<br>Environmental |                                                                                                                                                                                                                                                                               |
| Ethical                                       | Relates to <i>right and wrong</i> but in a moral sense than a legal issue. For example, there is nothing to stop you legally from using Facebook to stalk an ex-partner, but whether it is <i>right</i> to do so, is an ethical issue                                         |
| Legal                                         | There are certain laws set by government that control how computers can be used – see box                                                                                                                                                                                     |
| Cultural                                      | These issues relate to society and how technology can affect religious,<br>or social ideas. If people spend all their time on their phones rather<br>than talking face to face, this is a cultural issue                                                                      |
| Environmental                                 | How computing impacts on the global and local environments. This<br>might be waste production, or mining to gather resources needed to<br>make phones, or using renewable energy to charge phones, or recycling<br>projects. Companies want to be seen to be 'green'.         |

| Privacy                | Privacy is a very important issue. A person's right to privacy is very<br>important and there is strong law, alongside ethical guidance that<br>govern how companies can use our data                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stakeholder            | Anyone that is impacted on, in any way, by a technology. They have a vested interest                                                                                                                        |
| Open source            | Software that is created and shared with the source-code able to be seen. Users are free to make alterations to the source-code to meet their own needs, or to improve the system for everyone              |
| Proprietary            | Software that is created but the source code is locked. This is often sold, and the company wants to protect its intellectual copyright                                                                     |
| Legislation            | Laws that relate to a certain area                                                                                                                                                                          |
| Algorithms             |                                                                                                                                                                                                             |
| Algorithm              | An abstracted program which completes a given task, whatever the data provided                                                                                                                              |
| Search                 | Searching is looking through data, making comparisons with a search term, until the algorithm either finds the data, or identifies that it is not present.                                                  |
| Sort                   | Putting given sets of data into specified order – usually ascending (alphabetical) or descending (reverse alphabetical)                                                                                     |
| Linear Search          | A type of search where the computer checks every variable, in order, until it finds the search term. Potentially very slow.                                                                                 |
| Binary Search          | A search type based on repeatedly halving the searchable data, until the search term is found                                                                                                               |
| Bubble Sort            | A method of sorting data which looks at pairs of variable, and swaps them around if out of order. This continues until there are no more swaps to be made                                                   |
| Merge Sort             | Splits the data into increasingly small segments, until single data points are reached, then reassembles the data structure one item at a time.                                                             |
| Insertion Sort         | Checks through the data until finding the first incorrectly places item. The algorithm then checks all the previous places to see where the data fits, before inserting it into this slot.                  |
| Programming Techniques |                                                                                                                                                                                                             |
| Abstraction            | Abstraction is moving a problem out of the specific in order to create a general solution that would work in similar scenarios. Ignoring the gritty details to focus on the problem                         |
| Decomposition          | Breaking a problem down into smaller, computational solvable chunks                                                                                                                                         |
| Pseudo Code            | A structured way of planning code, which is 'computational' in style (uses Boolean<br>logic, variables, comparisons and arithmetic for example) but is not tied to a strict<br>high-level language's syntax |
| Flow Diagram           | A diagram made using specific shaped boxes, that mocks up the flow of a program through various stages, processes and decisions.                                                                            |
| Program Control        | Using Boolean logic to guide the computer through a program based on decisions                                                                                                                              |

| Comparison Operators | The symbols used to look at a variable or piece of data in relation to is similarity to another piece of data or variable                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arithmetic Operators | The symbols used to show the mathematics to be carried out on a piece of data.                                                                                                        |
|                      |                                                                                                                                                                                       |
| Robust Programs      |                                                                                                                                                                                       |
| Defensive design     | Planning a program from the very beginning to prevent accidental or purposeful misuse                                                                                                 |
| Input sanitization   | Removing erroneous data from a system prior to processing                                                                                                                             |
| Data validation      | Ensuring all data is in the correct format prior to processing                                                                                                                        |
| Contingency planning | Having built in checks and outcomes based on what happens when things go wrong                                                                                                        |
| Anticipating misuse  | Building programs which do not allow a user to deliberately break the system                                                                                                          |
| Authentication       | Having different levels of user, and preventing everyday users from being able to significantly change a system                                                                       |
| Maintainability      | Building software which is modular to enable sections to be updated<br>and replaced without having to write the whole program again from<br>scratch                                   |
| Code comments        | Annotating code so that the person maintaining or working with your code in the future is able to understand your thought process                                                     |
| Indentation          | Making code more readable by laying it out in a manner that keeps sections of code separate                                                                                           |
| Iterative testing    | Step by step testing to ensure that small sections of the code work, before new parts are added and then retested. Important to allow <i>traceback</i> to find what caused any errors |
| Terminal testing     | Significant testing done once a program is complete under a range of conditions and on multiple hardware – often called <i>Alpha Testing</i>                                          |
| Beta Testing         | Making a small release of the software to a group of tech-literate<br>enthusiasts to broaden the usage-testing and get lots of feedback prior<br>to full release.                     |
| syntax error         | An error in the typing of the code. Missing punctuation, spacing etc                                                                                                                  |
| Test data            | Data chosen to test the program. Testers use a specific range of data                                                                                                                 |
| Computational Logic  |                                                                                                                                                                                       |
| Logic                | A system designed to perform a specific task according to strict principles.                                                                                                          |

| Logic Gates         | The physical switches inside an electronic device which can perform the calculations a computer needs to carry out on electronic signals                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Truth Table         | A tabular representation of the possible inputs and outputs from a given logic gate, or collection of gates                                                                                                                                              |
| Boolean             | Mathematical TRUE or FALSE                                                                                                                                                                                                                               |
| Operator            | A mathematical symbol in computing                                                                                                                                                                                                                       |
| +                   | Addition [ 1+2=3 ]                                                                                                                                                                                                                                       |
| -                   | Subtraction [ 2-1=1 ]                                                                                                                                                                                                                                    |
| /                   | Division [5/2=2.5]                                                                                                                                                                                                                                       |
| *                   | Multiplication [2 * 2 = 4]                                                                                                                                                                                                                               |
| ٨                   | Exponentiation, raising a number to the power of [ 3^3 = 3 * 3 * 3 = 27<br>]                                                                                                                                                                             |
| MOD                 | Modulus division. To divide a number by another, but only return the <i>remainder</i> [10 MOD 3 = 1]                                                                                                                                                     |
| DIV                 | Integer Division. To divide a number by another, but only return the number of full sets. [ 10 DIV 3 = 3 ]                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                          |
| Languages           |                                                                                                                                                                                                                                                          |
| Low Level Language  | A programming language which is closer to binary than English                                                                                                                                                                                            |
| High Level Language | An abstracted programming language which is closer to English than binary                                                                                                                                                                                |
| Instruction Set     | Binary code which tells the computer hardware what to do – OpCode and Operand                                                                                                                                                                            |
| Machine Code        | 1 to 1 instruction coded in mnemonics (STO, ADD, MOD, DIV etc) which must be converted to binary to run                                                                                                                                                  |
| Abstraction         | Removing a level of detail to allow focus on the problem solving rather<br>than the specifics. <i>Python, and all other High-Level languages are</i><br><i>abstracted. You do not need to know the machine code to get</i><br><i>something to happen</i> |
| Translator          | A utility to convert High Level Code into binary machine code so it can be executed                                                                                                                                                                      |
| Interpreter         | A utility which translates High Level code on a line-by-line basis and executes the program as it goes in a special test environment                                                                                                                     |
| IDE                 | Integrated Development Environment                                                                                                                                                                                                                       |
| Text Editor         | A place to type code, focused on the content of the file, not the look of the file                                                                                                                                                                       |

| Error Diagnostics     | To test a program and provide feedback to the coder so that errors can be fixed                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run Time Environment  | Part of an IDE which allows a piece of code to be tested without installation                                                                                      |
|                       |                                                                                                                                                                    |
| Data Representation   |                                                                                                                                                                    |
| Denary                | Base 10 number system. Uses digits 0,1,2,3,4,5,6,7,8,9                                                                                                             |
| Binary                | Base 2 number system. Uses digits 0 and 1 only.                                                                                                                    |
| Hexadecimal (Hex)     | Base 16 number system. Uses characters 0-9 and A,B,C,D,E and F                                                                                                     |
| BIT                   | Contraction of BINARY DIGIT – a single value of 0 or 1                                                                                                             |
| Binary Code           | Representation of values using multiple bits                                                                                                                       |
| Character Set         | A list of unique values, stored in binary, which represent the letters, numbers and symbols a computer can show/use.                                               |
| ASCII                 | American Standard Code for Information Interchange.                                                                                                                |
|                       | A character set which uses 7 bits to store 128 (2 <sup>7</sup> ) characters                                                                                        |
| Extended ASCII        | A character set which uses 8 bits to store 256 (2 <sup>8</sup> ) characters                                                                                        |
| UNICODE               | A characters set which uses 16 bits to store 65,535 characters (2 <sup>16</sup> )                                                                                  |
| INTEGER               | A whole number (value written to 0 decimal places)                                                                                                                 |
| FLOAT                 | A decimal value                                                                                                                                                    |
| Conversion            | Moving a value from one data type/representation to another, for example Binary to Hex                                                                             |
| Exponent              | Mathematical term which tells you how many time to multiply a BASE by itself.                                                                                      |
| Overflow Error        | Where the denary value cannot be represented with the given number of bits.                                                                                        |
| Binary Shift          | The method for multiplying and dividing numbers in binary. Is not necessarily mathematically correct                                                               |
| Most Significant Bit  | The left-most bit in a binary number – it has the highest value                                                                                                    |
| Least Significant Bit | The right-most bit in a binary number – it has the lowest possible value = 0 or 1                                                                                  |
| Check Digits          | Bits used to ensure that the value sent digitally is not corrupted on transfer                                                                                     |
| Lossy Compression     | Data is removed from the file to make it smaller. This data is lost and cannot be regained. Suitable where the loss of data is likely not to be noticed. Eg images |

| Lossless Compression | No data is lost, but rather rearranged to ensure a perfect version of the data can be returned. Used where exact reproduction is vital. Eg text documents |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPEG / JPG           | Joint Photographic Experts Group                                                                                                                          |
|                      | Compression for images – lossy                                                                                                                            |
| GIF                  | Graphics Interchange Format                                                                                                                               |
|                      | Lossless bitmapped image format for limited colours.                                                                                                      |
| PDF                  | Printable Document Format                                                                                                                                 |
|                      | Open standard for reproducing text and graphic documents without editing permissions – lossless                                                           |
| MPEG                 | Moving Pictures Expert Group                                                                                                                              |
| MP3                  | Moving Pictures Expert Group Audio Layer 3                                                                                                                |
|                      |                                                                                                                                                           |

## Programming

| 2D array              | A static data structure that holds data both horizontally and vertically.<br>The structure is fixed and each element has the same data type.                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2D list               | A dynamic data structure that holds data both horizontally and vertically. The structure can change during program execution and the data types of the elements can be different. |
| Algorithm             | A series of instructions that end when the problem is solved.                                                                                                                     |
| Append                | Adding to an existing data structure.                                                                                                                                             |
| Argument              | The values held in the brackets of a subroutine call. These are passed into a subroutine via the parameters.                                                                      |
| Arithmetic expression | An expression that results in a numeric value.                                                                                                                                    |
| Array                 | A fixed (static) data structure that holds items of the same data type under one name.                                                                                            |
| ASCII                 | Acronym for American Standard Code for Information Interchange. It is used to represent characters with a numerical value.                                                        |
| Assembler             | An assembler translates assembly language into machine code.                                                                                                                      |
| Assembly language     | A language that replaces machine code with mnemonics and operands to make them easier to read / write.                                                                            |
| Assignment            | Assigning a value to a variable.                                                                                                                                                  |
| Attribute             | Properties or characteristics of an entity. E.g. player name, player score                                                                                                        |
|                       |                                                                                                                                                                                   |

| BIDMAS                | Acronym used to show the order of operations in an arithmetic<br>expression. Brackets, Indices, Division, Multiplication, Addition and<br>Subtraction. Add and subtract are interchangeable and should be read<br>from left to right. |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boolean data type     | A value that is either True or False.                                                                                                                                                                                                 |
| Boolean expression    | An expression that evaluates as True or False. Also known as a logical expression.                                                                                                                                                    |
| Boolean operator      | An operator used in a Boolean expression. For example AND, OR and NOT. Also known as logical operators.                                                                                                                               |
| Boundary data         | Data that should be accepted by a program. It tests the data right at the boundary of a range.                                                                                                                                        |
| Caesar cipher         | Named after Julius Caesar. A Caesar cipher is one of the oldest and simplest forms of encryption that involves shifting letters of the alphabet by a defined amount to create an encrypted message.                                   |
| Character             | A single character of string.                                                                                                                                                                                                         |
| Comparison operators  | An operator that is used to compare one operand to another. For example, < >.                                                                                                                                                         |
| Compiler              | A compiler creates an executable file for a program by translating a high level language to machine readable code.                                                                                                                    |
| Concatenate           | When two or more strings are joined together.                                                                                                                                                                                         |
| Condition             | Used to control the flow of execution in a program. A condition contains a logical expression.                                                                                                                                        |
| Constant              | A constant is a value that cannot be changed during the execution of a program.                                                                                                                                                       |
| Control flow          | The order in which instructions are executed in a program.                                                                                                                                                                            |
| CSV                   | Acronym for comma-separated values. It is a plaintext data file where each value is separated by a single comma.                                                                                                                      |
| Custom built function | A function that you have created yourself and imported into other programs that you have created.                                                                                                                                     |
| Data file             | A file that can be accessed and modified by a program.                                                                                                                                                                                |
| Data pairing          | In a dictionary, a data pairing is when a key (the attribute identifier) is paired with the data.                                                                                                                                     |
| Data structure        | Used to store data in an organised and accessible way.                                                                                                                                                                                |
| Data validation       | A check performed on data input to ensure that it can be accepted by the program without causing an error.                                                                                                                            |
| Database              | A structured and organised method for storing data. A database holds multiple records.                                                                                                                                                |

| Decision symbol     | Used on a flowchart to represent a condition.                                                                                                                      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Declaration         | Declaring a variable as a specific data type.                                                                                                                      |
| Decomposition       | Breaking down a problem into smaller sub-problems to make the more manageable.                                                                                     |
| Dictionary          | A data structure that involves creating data pairings that can be located using a key.                                                                             |
| Element             | A character in a string or an item in a sequence.                                                                                                                  |
| Entity              | An entity is a single object, place, person or thing. E.g. player                                                                                                  |
| Erroneous data      | Data that should not be accepted by the program or it will cause an error.                                                                                         |
| Error messages      | Used for finding errors in your program. They pinpoint lines of code that contain errors and provide details about them.                                           |
| Execute             | Carrying out the instructions for a computer program.                                                                                                              |
| Execution           | Carrying out the instructions for a computer program.                                                                                                              |
| Expression          | An expression is a collection of operands and operators that can be evaluated.                                                                                     |
| Field               | Also known as an attribute. It is the properties or characteristics of an entity.                                                                                  |
| Final testing       | Testing a program at the end of its creation.                                                                                                                      |
| Flowchart           | A visual representation of an algorithm or program.                                                                                                                |
| For loop            | An iterative statement that will repeat for the length of a given sequence.                                                                                        |
| Function            | A subroutine that returns a value.                                                                                                                                 |
| Function call       | A statement used to execute a function.                                                                                                                            |
| Global variable     | A global variable can be accessed and modified from anywhere in the program.                                                                                       |
| GUI                 | Acronym for Graphical User Interface. It is an event driven program that allows the user to interact with it in a variety of ways. For example, buttons and icons. |
| guizero             | A third party library that can be imported into Python to create a GUI.                                                                                            |
| High level language | A human readable language written in formal, structured English.                                                                                                   |
| IDE                 | Integrated development environment. This is a place to write programs that provides support with debugging and diagnostics.                                        |
| Import              | The keyword that enables a module to be brought into our programs.                                                                                                 |
| Index               | The location of items or elements in a list, array or string.                                                                                                      |

| Initialisation         | Assigning an initial value to a variable to let the compiler know that a memory location is required.                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input()                | A function that prompts the user for input.                                                                                                                                    |
| Integer                | A value that is a whole number.                                                                                                                                                |
| Integer division       | In integer division there can be remainders because the resulting value will be a whole number. For example 7 ÷ 3 will calculate as 2.                                         |
| Interface              | A term used with subroutines to describe how it will interact with the program. It refers to the subroutine identifier, parameters, order of parameters and the return values. |
| Interpreter            | An interpreter translates and executes code line by line. It translates the code into machine readable code.                                                                   |
| Iteration              | Repetition of code blocks. For example, a while loop.                                                                                                                          |
| Iterative testing      | Testing a program during its creation.                                                                                                                                         |
| Join method            | The join method takes a list and joins each value in that list into one string.                                                                                                |
| Кеу                    | In a dictionary data structure, a key is used to identify each attribute held in the dictionary.                                                                               |
| LED matrix             | A group of LEDs placed in a grid structure.                                                                                                                                    |
| Library                | In Python, the library contains built-in modules that provide access to system functionality such as file i/o.                                                                 |
| List                   | A dynamic data structure that holds items under one name. The items can be of varying data types.                                                                              |
| Logic error            | The program will run, but won't do what the programmer expected.<br>These are tricky to spot as they are not picked up by the IDE.                                             |
| Logical expression     | An expression that evaluates as either True or False.                                                                                                                          |
| Logical operator       | An operator used in a logical expression. For example AND, OR and NOT.                                                                                                         |
| Low level language     | This can be quickly executed by a computer. It is written in either machine code or assembly.                                                                                  |
| Machine code           | A program written using 1s and 0s. A computer can execute this directly.                                                                                                       |
| Meaningful identifiers | Naming a variable or data structure using a sensible name that can be easily recognised and remembered.                                                                        |
| Method                 | A function that belongs to an object.                                                                                                                                          |
| Mnemonic               | A code to help us remember something.                                                                                                                                          |
| MOD / Modulo           | Calculates the remainder of a division. For example 7 MOD 3 will calculate as 1.                                                                                               |

| Module               | In Python, a module is a file containing Python definitions and statements. The functionality of these definitions and statements is then available to be made use of.                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Naming convention    | A unified standard for naming things in a chosen programming language.                                                                                                                          |
| Naming conventions   | Following the guidance in the programming language documentation about naming structures.                                                                                                       |
| Nested selection     | A selection block placed within another selection block.                                                                                                                                        |
| Normal data          | Data that should be accepted by a program. This is data that you would expect a user to enter.                                                                                                  |
| Operand              | A piece of data that can be changed                                                                                                                                                             |
| Operator             | A symbol or function that performs an operation. For example +.                                                                                                                                 |
| Parameter            | Used in a subroutine to allow values to be passed into them.                                                                                                                                    |
| Pixel                | A single element of an image on a computer screen.                                                                                                                                              |
| Procedure            | A subroutine that executes a block of code when called. It does not return a value.                                                                                                             |
| Pseudo-random number | This type of random number is generated using mathematical algorithms which are computer-generated and therefore highly predictable.                                                            |
| Pseudocode           | Informal steps for an algorithm using structured English.                                                                                                                                       |
| Pythonista           | A programmer that uses Python as their desired programming language.                                                                                                                            |
| Real / Float         | A decimal number.                                                                                                                                                                               |
| Real division        | In real division there are no remainders because the resulting value can<br>be a decimal number. For example 7 ÷ 3 will be calculated as<br>2.3333333333333335.                                 |
| Record               | A collection of attributes for a single entity.                                                                                                                                                 |
| Return value         | A value that is returned by a function.                                                                                                                                                         |
| Robustness           | A program is robust when it does not produce any errors during execution.                                                                                                                       |
| Scope                | The scope of a variable is the section of the program where the variable can be accessed and modified.                                                                                          |
| Selection            | Controlling the flow of execution in programs using if statements.                                                                                                                              |
| Sense HAT            | Hardware that attaches to the top of a Raspberry Pi computer and<br>allows you to write programs that collect data from sensors. The Sense<br>HAT also has an LED matrix for displaying output. |
| Sense HAT emulator   | A digital representation of the physical Sense HAT device.                                                                                                                                      |

| Sensor                 | A tool that collects data.                                                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequence               | The sequence of a program is performed from top to bottom, executing each line in turn.                                                                                                                                      |
| Split method           | The split method takes a string and splits it when it finds a defined character. The result will be held as a list.                                                                                                          |
| Spreadsheet            | A document where data can be arranged in rows and columns. A spreadsheet can be used to sort and perform calculations on data.                                                                                               |
| String                 | A value that is text. This can include numbers but they will be read as text.                                                                                                                                                |
| String handling        | Performing operations on string.                                                                                                                                                                                             |
| Structure chart        | A top-down diagram used to design the structure of the subroutines required for completing a program.                                                                                                                        |
| Structured programming | A programming paradigm where sequence, selection, iteration and<br>subroutines are used to control the flow of execution. Each block of<br>code in a structured program has a single entry point and a single exit<br>point. |
| Subroutine             | A sequence of instructions to perform a specific task with an identifiable name.                                                                                                                                             |
| Substring              | Part of a string.                                                                                                                                                                                                            |
| Success criteria       | A list of key elements required in a programming solution based on the scenario or user requirements.                                                                                                                        |
| Syntax                 | In programming, the language specific code that you write in has its own syntax. The syntax is unique to that programming language.                                                                                          |
| Syntax                 | The formal method used to structure code in a given programming language.                                                                                                                                                    |
| Syntax error           | An error where the code has been structured incorrectly and the syntax rules haven't been followed.                                                                                                                          |
| Tabular format         | Displaying data in a grid of rows and columns.                                                                                                                                                                               |
| Terminator             | Oval shapes used to show the start and end of a flowchart.                                                                                                                                                                   |
| Text file              | A file stored on a computer that contains plain text.                                                                                                                                                                        |
| Third party libraries  | Code that has not been written by the Python developer or you that<br>can be imported into your programs to save you from writing them<br>yourself if you don't have the time or necessary skills.                           |
| Trace table            | An error checking method that steps through each line of code in a program and records the state of the variables and conditions.                                                                                            |
| Translator             | This executes the programs that programmers write in high level languages.                                                                                                                                                   |

| Traverse           | Move through a sequence.                                                                                                                                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True-random number | This type of random number is generated using unpredictable physical means such as atmospheric noise.                                                        |
| Truth table        | A table that lists the outputs of all possible input combinations.                                                                                           |
| Try and except     | A data validation check to see if the data entered can be accepted by<br>the program. If a defined error occurs the user will be prompted with a<br>warning. |
| Variable           | A value held under one name.                                                                                                                                 |
| While loop         | A loop that will continue to iterate whilst its condition evaluates as True.                                                                                 |
| XOR                | A Boolean / logical operator.                                                                                                                                |