

COMPUTER SCIENCE
Department Handbook 2021-2022

 1

 2

Table of Contents

DEPARTMENT AIMS AND VISION ... 4

INTENT .. 5

IMPLEMENTATION ... 5

DEPARTMENT ROLES .. 6

DEPARTMENT EXPECTATIONS - THE BASICS .. 7

LESSON ROUTINES .. 7
MARKING .. 7
LEARNING AND TEACHING .. 7

CURRICULUM DESIGN .. 8

COHERENCE AND FLEXIBILITY ... 8
KNOWLEDGE ORGANISATION .. 8
CORE PRINCIPLES.. 8
INCLUSIVE AND AMBITIOUS ... 8
RESEARCH-INFORMED .. 9

SUBJECT SPECIFIC PEDAGOGY AND CPD .. 9

LEAD WITH CONCEPTS ... 9
STRUCTURE LESSONS ... 9
MAKE CONCRETE ... 9
UNPLUG, UNPACK, REPACK ... 9
WORK TOGETHER ... 10
READ AND EXPLORE CODE FIRST ... 10
CREATE PROJECTS ... 10
MODEL EVERYTHING ... 10
GET HANDS-ON ... 10
CHALLENGE MISCONCEPTIONS ... 10
ADD VARIETY .. 10
FOSTER PROGRAM COMPREHENSION .. 10
STRUCTURE OF KS3 UNITS OF WORK AND SUMMARIES ... 11
KS3 UNITS ASSESSMENT TAXONOMY ... 12
GCSE CURRICULUM AND ASSESSMENT TAXONOMY ... 13

PROGRESSION MODEL ... 31

ASSESSMENT POLICY .. 32

FORMATIVE ASSESSMENT ... 32
SUMMATIVE ASSESSMENT .. 32
MULTIPLE CHOICE QUIZ (MCQ) ... 32
RUBRICS ... 33
STUDENT ACCOUNTABILITY ... 33

 3

PROGRESSION PATHWAYS KS3.. 34
PROGRESSION PATHWAYS KS4.. 35

HOMEWORK POLICY .. 36

YEARS 7, 8 AND 9 .. 36
YEARS 7 & 9 ... 36
YEAR 8 .. 36
‘FOR THE LOVE OF’ ... 36
YEAR 10 AND 11 ... 36

PERIOD 6 EXPECTATIONS ... 37

RED LINES .. 38

VOCABULARY GLOSSARY .. 39

CORE .. 39
PROGRAMMING .. 51

 4

Department Aims and Vision
working together with passion and panache

Our aims are to work effectively as a highly skilled team of staff to

✓ Demonstrate an ambitious vision for the school and high expectations for what

every student and member of staff can achieve, expecting excellence in every

aspect of our work.

✓ Offer a rich, relevant, broad and balanced curriculum within and beyond the

formal timetable, including participation in local, national and international events,

competitions and visits which motivate and inspire a thirst for knowledge

✓ Constantly drive towards securing the highest standards of both achievement and

progress for all students – meeting FFT 50 targets for all in the first instance.

✓ Enable all students to have command and control through a mastery

curriculum and the PCS Great Teaching & Learning model of pedagogy

✓ Build the capacity of team members so that all colleagues are:

 supported and challenged

 demonstrate the highest standards of professional skill/aptitude

 proactively contribute to the drive for continuous improvement.

✓ Ensure that planning for improvement and innovation is based on rigorous data

analysis, quality assurance and self-evaluation.

 5

Intent

Computing sits at the cornerstone of the modern world, affecting the way we communicate and work as it
encompasses Digital Literacy, IT and Computer Science. Our curriculum offers a pathway for our students
to explore the use of applications and the creation of software to solve complex real-world problems using
algorithmic thinking, which consists of abstraction, decomposition, and pattern recognition. Our focus is to
develop confident independent learners who can apply thinking and reasoning skills developed in
computing and other subjects across the curriculum.

We aim to develop competent students who can express themselves using a variety of applications and
problem-solving techniques which allows them to tackle challenging problems related to business and the
communication of data. To achieve this, students must master several applications including the ability to
decompose a problem into smaller more manageable tasks using abstraction to clarify the important
details contained in a specification brief. To master these skills students are exposed to familiar and
unfamiliar contexts which require the application of critical thinking skills to simplify computable problems.
Due to the crossover between Maths and Computer Science students will be encouraged to make use of
mathematical formulae when they develop software solutions as well as the use of algebra to develop and
test programming concepts.

Implementation

Please refer to the relevant sections for KS3 and GCSE curriculum coverage and explanation

Curriculum Design KS3

GCSE Computer Science .

 6

Department Roles

Team
Member

Role Stage of career/
TLR/ UPR

Developmental responsibilities Maintenance
responsibilities

Training needs

Anthony
Crowther

Head of Computer
Science

HOD /UPR o Overview of curriculum,
assessment, teaching and learning,
monitoring impact of revised
curriculum

o Quality assurance
o Data analysis overview for KS3 and

KS4
o Leading dept. Meetings
o Performance management
o Dept. vision and priorities
o Overall accountability for dept.

outcomes
o Mentoring (PGCE)
o Coaching (NQT +1)
o SEN Ambassador

o Overseeing
department

o Monitoring and
refining online
space

o Oversight of
assessment
trackers

Leading
improvement in
Computer Science

(examiner?)

Charles Wray

Teacher of Computer
Science

Teacher / MPS o Reviewing and developing aspects
of the curriculum (see plan below)

o Leading Robotics club and other
extra-curricular activities

o Production of Dept. MCQ’s (half
termly 3 per year group – Add
duplicate links to tracker)

o Creation of draft ‘for the love of’
home learning

o SMSC link

o Tracking of
MCQ’s

o National Centre

for Computing
link

Effective assessment

Exam marking

 7

Department expectations - The Basics

Lesson routines
• Levelled and progressive objectives x2 / inspiring rather than demotivating levelling

• Use of ruler/pencil for drawing, pen for writing

• Presentation via MS Office and OneNote through MS Teams:

o Use of screenshots to present programming activities

o Writing to explain must use structured English with full sentences and accurate grammar

o Electronic drawings are accepted form of submission for certain activities

• Key words explored / explained in the section provided in OneNote

• Resources – attractive, quality, legible

Marking
• Expectation is that all practise work is self/peer marked but that all GCSE/multi-step problems are

marked by the teacher and feedback given on:

a) correcting misconceptions
b) marking for mastery
c) specifying activity to consolidate/extend for green pen/text.

• Green penning/text evident after feedback - doesn't need to take a full lesson but should be a

regular element of responding to feedback

• Learning dialogue clear – specifics re how to improve skill and knowledge

• Comments - skill and knowledge focused not behaviour focused

• Teachers are expected to maintain a marksheet logging students’ scores for HW and scores for

classwork/exit tickets i.e., progress with multi-step questions. Tests [low stakes and MCQs]

recorded via Teams Gradebook

Learning and teaching
• Question deconstruction explicitly taught [RUCSAC/BUG]

• Use of technical terminology consistently and across all year groups - including keywords with

definitions in the relevant boxes in students’ work. [The etymology of keywords is being built into

sows and should be included wherever possible].

• Worded questions used for all areas

• Problem solving approach explicit

• Working out expected

• Student’s redraft/refine to reinforce standards expected/learning [NOT a pretty copy!]

• Pupils write their own questions / problems

• Language of the exam questions explored and used: work out, describe, explain, solve, write down

• Starters used to revise

• Learning pitched to stretch no ceilings created

• A4L to address misconceptions and to inform planning for progress

• Directed questioning to hold students to account and challenge with a plenary each lesson

 8

Curriculum Design

Coherence and flexibility
Our curriculum is structured in units. For these units to be coherent, the lessons within a unit must be
taught in order. However, across a year group, the units themselves do not need to be taught in order,
except for ‘Programming’ units, where concepts and skills rely on prior learning and experiences.

Knowledge organisation
Our curriculum uses the National Centre for Computing Education’s computing taxonomy to ensure
comprehensive coverage of the subject. This has been developed through a thorough review of the KS1–4
computing programme of study, and the GCSE and A level computer science specifications across all
awarding bodies. All learning outcomes can be described through a high-level taxonomy of ten strands,
ordered alphabetically as follows:

• Algorithms — Be able to comprehend, design, create, and evaluate algorithms

• Computer networks — Understand how networks can be used to retrieve and share information,
and how they come with associated risks

• Computer systems — Understand what a computer is, and how its constituent parts function
together as a whole

• Creating media — Select and create a range of media including text, images, sounds, and video

• Data and information — Understand how data is stored, organised, and used to represent real-
world artefacts and scenarios

• Design and development — Understand the activities involved in planning, creating, and evaluating
computing artefacts

• Effective use of tools — Use software tools to support computing work

• Impact of technology — Understand how individuals, systems, and society as a whole interact with
computer systems

• Programming — Create software to allow computers to solve problems

• Safety and security — Understand risks when using technology, and how to protect individuals and
systems

The taxonomy provides categories and an organised view of content to encapsulate the discipline of
computing. Whilst all strands are present at all phases, they are not always taught explicitly.

Core principles
Inclusive and ambitious
Our Computing Curriculum has been written to support all pupils. Each lesson is sequenced so that it builds
on the learning from the previous lesson, and where appropriate, activities are scaffolded so that all pupils
can succeed and thrive. Scaffolded activities provide pupils with extra resources, such as visual prompts, to
reach the same learning goals as the rest of the class. Exploratory tasks foster a deeper understanding of a
concept, encouraging pupils to apply their learning in different contexts and make connections with other
learning experiences.
As well as scaffolded activities, embedded within the lessons are a range of pedagogical strategies which
support making computing topics more accessible.

 9

Research-informed
The subject of computing is much younger than many other subjects, and as such, there is still a lot more
to learn about how to teach it effectively. To ensure that teachers are as prepared as possible, our
curriculum builds on a set of pedagogical principles, which are underpinned by the latest computing
research, to demonstrate effective pedagogical strategies throughout.
To remain up to date as research continues to develop, every aspect of our curriculum is reviewed each
year and changes are made as necessary.

Subject Specific Pedagogy and CPD

Computing is a broad discipline, and computing teachers require a range of strategies to deliver effective
lessons to their pupils. The National Centre for Computing Education’s pedagogical approach consists of 12
key principles underpinned by research: each principle has been shown to contribute to effective teaching
and learning in computing.

It is recommended that teachers use their professional judgement to review, select, and apply relevant
strategies for their pupils.
These 12 principles are embodied by the Teach Computing Curriculum, and examples of their application
can be found throughout the units of work at every key stage.

It is important for our teachers to adopt this pedagogy as it links to the CPD that has been used to develop
our teachers over the last 12 months:
▪ Computing at Schools Master Teacher – Anthony Crowther
▪ National Centre for Computing Education Accelerator program - Charles Wray

Lead with concepts
Support pupils in the acquisition of knowledge, using key concepts, terms, and vocabulary, providing
opportunities to build a shared and consistent understanding.
Glossaries, concept maps and displays, along with regular recall and revision, can support this approach.

Structure lessons
Use supportive frameworks when planning lessons, such as PRIMM (Predict, Run, Investigate, Modify,
Make and Use-Modify-Create. These frameworks are based on research and ensure that differentiation
can be built in at various stages of the lesson. Primarily it begins with comprehending code rather than
starting with a blank slate.

Make concrete
Bring abstract concepts to life with real-world, contextual examples and a focus on interdependencies with
other curriculum subjects. This can be achieved using unplugged activities, proposing analogies,
storytelling around concepts, and finding examples of the concepts in pupils’ lives.

Unplug, unpack, repack
Teach new concepts by first unpacking complex terms and ideas, exploring these ideas in unplugged and
familiar contexts, then repacking this new understanding into the original concept. This approach, called
semantic waves can help pupils develop a secure understanding of complex concepts.

 10

Work together
Encourage collaboration, specifically using pair programming and peer instruction and structured group
tasks. Working together stimulates classroom dialogue, articulation of concepts, and development of
shared understanding

Read and explore code first
When teaching programming, focus first on code ‘reading’ activities, before code writing. With both block-
based and text-based programming, encourage pupils to review and interpret blocks of code. Research has
shown that being able to read, trace, and explain code augments pupils’ ability to write code.

Create projects
Use project-based learning activities to provide pupils with the opportunity to apply and consolidate their
knowledge and understanding. Design is an important, often overlooked aspect of computing. Pupils can
consider how to develop an artefact for a particular user or function and evaluate it against a set of
criteria.

Model everything
Model processes or practices — everything from debugging code to binary number conversions — using
techniques such as worked examples and live coding. Modelling is particularly beneficial to novices,
providing scaffolding that can be gradually taken away.

Get hands-on
Use physical computing and making activities that offer tactile and sensory experiences to enhance
learning. Combining electronics and programming with arts and crafts (especially through exploratory
projects) provides pupils with a creative, engaging context to explore and apply computing concepts.

Challenge misconceptions
Use formative questioning to uncover misconceptions and adapt teaching to address them as they occur.
Awareness of common misconceptions alongside discussion, concept mapping, peer instruction, or simple
quizzes can help identify areas of confusion.

Add variety
Provide activities with different levels of direction, scaffolding, and support that promote active learning,
ranging from highly structured to more exploratory tasks.
Adapting your instruction to suit different objectives will help keep all pupils engaged and encourage
greater independence.

Foster program comprehension
Use a variety of activities to consolidate knowledge and understanding of the function and structure of
program s including debugging, tracing, and Parson’s Problems. Regular comprehension activities will help
secure understanding and build connections with new knowledge.

 11

Structure of KS3 Units of Work and Summaries
Presented here in the order of delivery at Park.

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Year 7

Impact of
Technology
Identifying how to use
online collaboration tools
respectfully. An
introduction to the
computing lab.

Modelling data
Sorting and filtering data
and using formulas and
functions in spreadsheet
software.

Networks
Recognising networking
hardware and explaining
how networking
components are used for
communication.

Programming Part 1
Applying the
programming constructs
of sequence, selection,
and iteration in Scratch.

Programming Part 2
Using subroutines to
decompose a problem
that incorporates lists in
Scratch.

Using Media
Creating a digital product
for a real-world cause.

Year 8

Computer Systems
Exploring the
fundamental elements
that make up a computer
system.

Developing for the
web
Using HTML and CSS to
create webpages.

Introduction to
Python
Applying the
programming constructs
of sequence, selection,
and iteration in Python.

Vector Graphics
Creating vector graphics
through objects, layering,
and path manipulation.

Mobile Apps
Using event-driven
programming to create
an online gaming app.

Data
Representations
Representing numbers
and text using binary
digits.

Year 9

Cybersecurity

Identifying how users and
organisations can protect
themselves from
cyberattacks.

Data Science
Using data to investigate
problems and make real-
world changes.

Animations
Creating 3D animations
through object
manipulation and
tweaking and adjusting
lighting and camera
angles.

Physical Computing
Sensing and controlling
with the micro:bit.

Python
Programming
Manipulating strings and
lists. Creating a
programming project.

Data
Representations
Representing images and
sound using binary digits.

 12

KS3 Units Assessment Taxonomy

Objectives 7.1 7.2 7.3 7.4 7.5 7.6 8.1 8.2 8.3 8.4 8.5 8.6 9.1 9.2 9.3 9.4 9.5 9.6
Design, use and evaluate computational abstractions that model the state
and behaviour of real-world problems and physical systems T T T T T

Understand several key algorithms that reflect computational thinking [for
example, ones for sorting and searching]; use logical reasoning to compare
the utility of alternative algorithms for the same problem T T T T T T

Use two or more programming languages, at least one of which is textual, to
solve a variety of computational problems; make appropriate use of data
structures [for example, lists, tables or arrays]; design and develop modular
programs that use procedures or functions

 T T T T T

Understand simple Boolean logic [for example, AND, OR and NOT] and some
of its uses in circuits and programming; understand how numbers can be
represented in binary, and be able to carry out simple operations on binary
numbers [for example, binary addition, and conversion between binary and
decimal]

 T T T

Understand the hardware and software components that make up
computer systems, and how they communicate with one another and with
other systems T T

Understand how instructions are stored and executed within a computer
system; understand how data of various types (including text, sounds and
pictures) can be represented and manipulated digitally, in the form of
binary digits

 T T T T T T

Undertake creative projects that involve selecting, using, and combining
multiple applications, preferably across a range of devices, to achieve
challenging goals, including collecting and analysing data and meeting the
needs of known users

 T T T T

Create, reuse, revise and repurpose digital artefacts for a given audience,
with attention to trustworthiness, design and usability T T T T T T T T

Understand a range of ways to use technology safely, respectfully,
responsibly and securely, including protecting their online identity and
privacy; recognise inappropriate content, contact and conduct, and know
how to report concerns

T T

 13

GCSE Curriculum and Assessment Taxonomy

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.1 - Systems
architecture

Architecture
of the CPU

common CPU components and their
function:
- ALU (Arithmetic Logic Unit)
- CU (Control Unit)
- Cache
- Registers

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

Architecture
of the CPU

The purpose of the CPU:
- The fetch-execute cycle

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

CPU
performance

how common characteristics of CPUs
affect their performance:
- clock speed
- cache size
- number of cores

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

Embedded
systems

Examples of embedded systems
Object-oriented

programming
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

1.1 - Systems
architecture

Embedded
systems

The purpose and characteristics of
embedded systems

Object-oriented
programming

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

1.2 - Memory
and storage

Data storage binary shifts Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how an image is represented as a series
of pixels, represented in binary

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how sound can be sampled and stored in
digital form

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how to add two binary integers together
(up to and including 8 bits) and explain
overflow errors which may occur

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 14

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.2 - Memory
and storage

Data storage
How to convert binary integers to their
hexadecimal equivalents and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
How to convert positive denary whole
numbers into 2-digit hexadecimal
numbers and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
How to convert positive denary whole
numbers to binary numbers (up to and
including 8 bits) and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage metadata Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

the effect of colour depth and resolution
on:
- the quality of the image
- the size of an image file

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

The effect of sample rate, duration and bit
depth on:
- The playback quality
- The size of a sound file

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

the relationship between the number of
bits per character in a character set, and
the number of characters which can be
represented, e.g.:
- ASCII
- Unicode

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage the term ‘character-set’ Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
the use of binary codes to represent
characters

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

the difference between RAM and ROM Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

The need for primary storage Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 15

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.2 - Memory
and storage

Primary
storage
(Memory)

the purpose of RAM in a computer
system

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

the purpose of ROM in a computer
system

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

common types of storage:
- optical
- magnetic
- solid state

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

the advantages and disadvantages of
these, using characteristics:
- capacity
- speed
- portability
- durability
- reliability
- cost.

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

the need for secondary storage Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Units
How data needs to be converted into a
binary format to be processed by a
computer

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Units

The units of data storage:
- Bit
- Nibble (4 bits)
- Byte (8 bits)
- Kilobyte (1,000 bytes or 1 KB)
- Megabyte (1,000 KB)
- Gigabyte (1,000 MB)
- Terabyte (1,000 GB)
- Petabyte (1,000 TB)

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

factors that affect the performance of
networks

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

star and mesh network topologies Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 16

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the different roles of computers in a
client-server and a peer-to-peer network

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the hardware needed to connect stand-
alone computers into a Local Area
Network:
- wireless access points
- routers
- switches
- NIC (Network Interface Controller/Card)
- transmission media

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the internet as a worldwide collection of
computer networks:
- DNS (Domain Name Server)
- hosting
- the cloud
- web servers and clients

Computer Systems,
Networks

FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

types of networks:
- LAN (Local Area Network)
- WAN (Wide Area Network)

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Common protocols including:
- TCP/IP (Transmission Control
Protocol/Internet Protocol)
- HTTP (Hyper Text Transfer Protocol)
- HTTPS (Hyper Text Transfer Protocol
Secure)
- FTP (File Transfer Protocol)
- POP (Post Office Protocol)
- IMAP (Internet Message Access
Protocol)
- SMTP (Simple Mail Transfer Protocol)

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

IP addressing and MAC addressing Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 17

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Modes of connection:
- Wired
 - Ethernet
- Wireless
 - Wi-Fi
 - Bluetooth

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Network standards Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

the concept of layers Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.4 - Network
security

Identifying
and
preventing
vulnerabilities

Common prevention methods:
- Penetration testing
- Anti-malware software
- Firewalls
- User access levels
- Passwords
- Encryption
- Physical security

Networks, Security FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.4 - Network
security

Threats to
computer
systems and
networks

Forms of attack:
- Malware
- Social engineering, e.g. phishing,
people as the ‘weak point’
- Brute-force attacks
- Denial of service attacks
- Data interception and theft
- The concept of SQL injection

Security FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.5 - Systems
software

Utility
software

the purpose and functionality of utility
software

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.5 - Systems
software

Utility
software

utility system software:
- encryption software
- defragmentation
- data compression

Animations FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 18

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.6 - Ethical,
legal, cultural
and
environmenta
l impacts of
digital
technology

Ethical, legal,
cultural and
environmental
impact

Impacts of digital technology on wider
society including:
- Ethical issues
- Legal issues
- Cultural issues
- Environmental issues
- Privacy issues

Impacts of technology,
Security

FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.6 - Ethical,
legal, cultural
and
environmenta
l impacts of
digital
technology

Ethical, legal,
cultural and
environmental
impact

Legislation relevant to Computer Science:
- The Data Protection Act 2018
- Computer Misuse Act 1990
- Copyright Designs and Patents Act
1988
- Software licences (i.e. open source and
proprietary)

Impacts of technology FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Computationa
l thinking

Principals of computational thinking:
- abstraction
- decomposition
- algorithmic thinking

Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

(create, interpret, correct, complete, and
refine algorithms using:
- pseudocode
- flowcharts
- reference language / high-level
programming language)

Algorithms 1, Algorithms
2, Flat-file
databases,
Iteration,
Selection,
Sequence

TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Identify common errors Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Trace tables Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Searching
and sorting
algorithms

standard searching algorithms:
- binary search
- linear search

Algorithms 2 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 19

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.1 -
Algorithms

Searching
and sorting
algorithms

standard sorting algorithms:
- bubble sort
- merge sort
- insertion sort

Algorithms 2 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

(the use of SQL to search for data) Databases and SQL FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

how to use sub programs (functions and
procedures) to produce structured code

Iteration, Sequence,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

Random number generation Selection, Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of arrays (or equivalent) when
solving problems, including both one-
dimensional and two-dimensional
arrays

Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of basic file handling operations:
- open
- read
- write
- close

Dictionaries and datafiles,
Flat-file
databases

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of basic string manipulation Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of records to store data
Dictionaries and datafiles,

Strings and lists
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

2.2 -
Programming
fundamentals

Data types

the use of data types:
- integer
- real
- Boolean
- character and string
- casting

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the common arithmetic operators Selection FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

 20

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.2 -
Programming
fundamentals

Programming
fundamentals

the common Boolean operators AND, OR
and NOT

Selection FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the use of the three basic programming
constructs used to control the flow of a
program:
- sequence
- selection
- iteration (count- and condition-
controlled loops)

Iteration, Programming I,
Selection,
Sequence

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the use of variables, constants, operators,
inputs, outputs and assignments

Selection, Sequence,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Defensive
design

Input validation Iteration, Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Defensive
design

Maintainability:
- Use of sub programs
- Naming conventions
- Indentation
- Commenting

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing identify syntax and logic errors Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing Refining algorithms Dictionaries and datafiles FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

2.3 -
Producing
robust
programs

Testing

selecting and using suitable test data:
- Normal
- Boundary
- Invalid
- Erroneous

Subroutines FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing
types of testing:
- iterative
- final/terminal

Dictionaries and datafiles,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

 21

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.4 - Boolean
logic

Boolean logic
applying logical operators in truth tables
to solve problems

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.4 - Boolean
logic

Boolean logic
combining Boolean operators using AND,
OR and NOT

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.4 - Boolean
logic

Boolean logic truth tables
Computer Systems,

Subroutines
FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages

Characteristics and purpose of different
levels of programming language:
- High-level languages
- Low-level languages

Computer Systems,
Sequence

FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages
the characteristics of a compiler and an
interpreter

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages the purpose of translators Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

The
Integrated
Development
Environment
(IDE)

common tools and facilities available in
an integrated development environment
(IDE):
- editors
- error diagnostics
- run-time environment
- translators.

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

Architecture
of the CPU

common CPU components and their
function:
- ALU (Arithmetic Logic Unit)
- CU (Control Unit)
- Cache
- Registers

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 22

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.1 - Systems
architecture

Architecture
of the CPU

The purpose of the CPU:
- The fetch-execute cycle

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

Architecture
of the CPU

Von Neumann architecture:
- MAR (Memory Address Register)
- MDR (Memory Data Register)
- Program Counter
- Accumulator

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

CPU
performance

how common characteristics of CPUs
affect their performance:
- clock speed
- cache size
- number of cores

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.1 - Systems
architecture

Embedded
systems

Examples of embedded systems
Object-oriented

programming
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

1.1 - Systems
architecture

Embedded
systems

The purpose and characteristics of
embedded systems

Object-oriented
programming

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

1.2 - Memory
and storage

Compression need for compression FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Compression
types of compression:
- lossy
- lossless.

 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage binary shifts Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how an image is represented as a series
of pixels, represented in binary

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how sound can be sampled and stored in
digital form

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
how to add two binary integers together
(up to and including 8 bits) and explain
overflow errors which may occur

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
How to convert binary integers to their
hexadecimal equivalents and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
How to convert positive denary whole
numbers into 2-digit hexadecimal
numbers and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 23

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.2 - Memory
and storage

Data storage
How to convert positive denary whole
numbers to binary numbers (up to and
including 8 bits) and vice versa

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage metadata Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

the effect of colour depth and resolution
on:
- the quality of the image
- the size of an image file

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

The effect of sample rate, duration and bit
depth on:
- The playback quality
- The size of a sound file

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage

the relationship between the number of
bits per character in a character set, and
the number of characters which can be
represented, e.g.:
- ASCII
- Unicode

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage the term ‘character-set’ Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Data storage
the use of binary codes to represent
characters

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

the difference between RAM and ROM Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

The need for primary storage Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

the need for virtual memory FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 24

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.2 - Memory
and storage

Primary
storage
(Memory)

the purpose of RAM in a computer
system

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Primary
storage
(Memory)

the purpose of ROM in a computer
system

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

common types of storage:
- optical
- magnetic
- solid state

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

suitable storage devices and storage
media for a given application

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

the advantages and disadvantages of
these, using characteristics:
- capacity
- speed
- portability
- durability
- reliability
- cost.

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Secondary
storage

the need for secondary storage Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Units
data capacity and calculation of data
capacity requirements

 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Units
How data needs to be converted into a
binary format to be processed by a
computer

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.2 - Memory
and storage

Units

The units of data storage:
- Bit
- Nibble (4 bits)
- Byte (8 bits)
- Kilobyte (1,000 bytes or 1 KB)
- Megabyte (1,000 KB)
- Gigabyte (1,000 MB)
- Terabyte (1,000 GB)
- Petabyte (1,000 TB)

Data Representation FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,

Networks and
topologies

factors that affect the performance of
networks

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 25

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

connections
and protocols

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

star and mesh network topologies Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the different roles of computers in a
client-server and a peer-to-peer network

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the hardware needed to connect stand-
alone computers into a Local Area
Network:
- wireless access points
- routers
- switches
- NIC (Network Interface Controller/Card)
- transmission media

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

the internet as a worldwide collection of
computer networks:
- DNS (Domain Name Server)
- hosting
- the cloud
- web servers and clients

Computer Systems,
Networks

FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Networks and
topologies

types of networks:
- LAN (Local Area Network)
- WAN (Wide Area Network)

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Common protocols including:
- TCP/IP (Transmission Control
Protocol/Internet Protocol)
- HTTP (Hyper Text Transfer Protocol)
- HTTPS (Hyper Text Transfer Protocol
Secure)
- FTP (File Transfer Protocol)
- POP (Post Office Protocol)
- IMAP (Internet Message Access
Protocol)
- SMTP (Simple Mail Transfer Protocol)

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 26

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Encryption Security FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

IP addressing and MAC addressing Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Modes of connection:
- Wired
 - Ethernet
- Wireless
 - Wi-Fi
 - Bluetooth

Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

Network standards Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.3 -
Computer
networks,
connections
and protocols

Wired and
wireless
networks,
protocols and
layers

the concept of layers Networks FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.4 - Network
security

Identifying
and
preventing
vulnerabilities

Common prevention methods:
- Penetration testing
- Anti-malware software
- Firewalls
- User access levels
- Passwords
- Encryption
- Physical security

Networks, Security FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.4 - Network
security

Threats to
computer
systems and
networks

Forms of attack:
- Malware
- Social engineering, e.g. phishing,
people as the ‘weak point’
- Brute-force attacks
- Denial of service attacks
- Data interception and theft
- The concept of SQL injection

Security FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 27

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

1.5 - Systems
software

Operating
systems

The purpose and functionality of
operating systems:
- user interface
- memory management and multitasking
- peripheral management and drivers
- user management
- file management

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.5 - Systems
software

Utility
software

the purpose and functionality of utility
software

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.5 - Systems
software

Utility
software

utility system software:
- encryption software
- defragmentation
- data compression

Animations FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.6 - Ethical,
legal, cultural
and
environmenta
l impacts of
digital
technology

Ethical, legal,
cultural and
environmental
impact

Impacts of digital technology on wider
society including:
- Ethical issues
- Legal issues
- Cultural issues
- Environmental issues
- Privacy issues

Impacts of technology,
Security

FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1.6 - Ethical,
legal, cultural
and
environmenta
l impacts of
digital
technology

Ethical, legal,
cultural and
environmental
impact

Legislation relevant to Computer Science:
- The Data Protection Act 2018
- Computer Misuse Act 1990
- Copyright Designs and Patents Act
1988
- Software licences (i.e. open source and
proprietary)

Impacts of technology FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Computationa
l thinking

Principals of computational thinking:
- abstraction
- decomposition
- algorithmic thinking

Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

(create, interpret, correct, complete, and
refine algorithms using:
- pseudocode
- flowcharts
- reference language / high-level
programming language)

Algorithms 1,
Algorithms 2, Flat file
databases, Iteration,
Selection, Sequence

TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Identify common errors Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Identify the inputs, processes, and
outputs for a problem

Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 28

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Structure diagrams Subroutines FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2.1 -
Algorithms

Designing,
creating and
refining
algorithms

Trace tables Algorithms 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Searching
and sorting
algorithms

standard searching algorithms:
- binary search
- linear search

Algorithms 2 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.1 -
Algorithms

Searching
and sorting
algorithms

standard sorting algorithms:
- bubble sort
- merge sort
- insertion sort

Algorithms 2 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

(the use of SQL to search for data) Databases and SQL FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

how to use sub programs (functions and
procedures) to produce structured code

Iteration, Sequence,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

Random number generation Selection, Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of arrays (or equivalent) when
solving problems, including both one-
dimensional and two-dimensional
arrays

Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of basic file handling operations:
- open
- read
- write
- close

Dictionaries and datafiles,
Flat-file
databases

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of basic string manipulation Strings and lists FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2.2 -
Programming
fundamentals

Additional
programming
techniques

the use of records to store data
Dictionaries and datafiles,

Strings and lists
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

2.2 -
Programming
fundamentals

Data types

the use of data types:
- integer
- real
- Boolean
- character and string
- casting

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

 29

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.2 -
Programming
fundamentals

Programming
fundamentals

the common arithmetic operators Selection FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the common Boolean operators AND, OR
and NOT

Selection FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the use of the three basic programming
constructs used to control the flow of a
program:
- sequence
- selection
- iteration (count- and condition-
controlled loops)

Iteration, Programming I,
Selection,
Sequence

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

2.2 -
Programming
fundamentals

Programming
fundamentals

the use of variables, constants, operators,
inputs, outputs and assignments

Selection, Sequence,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Defensive
design

defensive design considerations:
- anticipating misuse
- authentication

Dictionaries and datafiles FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

2.3 -
Producing
robust
programs

Defensive
design

Input validation Iteration, Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Defensive
design

Maintainability:
- Use of sub programs
- Naming conventions
- Indentation
- Commenting

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing identify syntax and logic errors Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing Refining algorithms Dictionaries and datafiles FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

2.3 -
Producing
robust
programs

Testing

selecting and using suitable test data:
- Normal
- Boundary
- Invalid
- Erroneous

Subroutines FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

 30

Specification Sub-topic To know and understand: Units A
lg

o
ri

th
m

s
 1

C
o

m
p

u
te

r
S

y
s
te

m
s

D
a
ta

 R
e
p

re
s
e
n

ta
ti

o
n

A
lg

o
ri

th
m

s
 2

Im
p

a
c
ts

 o
f

te
c
h

n
o

lo
g

y

N
e
tw

o
rk

s

S
e
c
u

ri
ty

D
a
ta

b
a

s
e
s
 a

n
d

 S
Q

L

S
e
q

u
e

n
c
e

S
e
le

c
ti

o
n

It
e
ra

ti
o

n

S
u

b
ro

u
ti

n
e

s

S
tr

in
g

s
 a

n
d

 l
is

ts

D
ic

ti
o

n
a

ri
e
s
 a

n
d

d
a

ta
fi

le
s

O
b

je
c
t-

o
ri

e
n

te
d

p
ro

g
ra

m
m

in
g

2.3 -
Producing
robust
programs

Testing the purpose of testing Subroutines FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2.3 -
Producing
robust
programs

Testing
types of testing:
- iterative
- final/terminal

Dictionaries and datafiles,
Subroutines

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

2.4 - Boolean
logic

Boolean logic
applying logical operators in truth tables
to solve problems

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.4 - Boolean
logic

Boolean logic
combining Boolean operators using AND,
OR and NOT

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.4 - Boolean
logic

Boolean logic
simple logic diagrams using the operators
AND, OR and NOT

Computer Systems FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2.4 - Boolean
logic

Boolean logic truth tables
Computer Systems,

Subroutines
FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages

Characteristics and purpose of different
levels of programming language:
- High-level languages
- Low-level languages

Computer Systems,
Sequence

FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages
the characteristics of a compiler and an
interpreter

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

Languages the purpose of translators Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2.5 -
Programming
languages
and
Integrated
Development
Environments

The
Integrated
Development
Environment
(IDE)

common tools and facilities available in
an integrated development environment
(IDE):
- editors
- error diagnostics
- run-time environment
- translators.

Sequence FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

 31

Progression Model
This model below demonstrates how the Units at KS3 feed the Units at GCSE and exemplifies the importance of progression through learning foundation
concepts.

 32

Assessment Policy

The Computing assessment policy aims to ensure we have a balance between curriculum coverage and
assessment, which ought to support student progress through a recognition of achievement and reflection
upon areas for improvement.

Although it is important to use a range of assessment methods, a great deal of what we do in Computing is
practical and therefore verbal feedback is a consistent feature of lessons.

Computational thinking and Problem solving are key features of all units of work across the department.
Computational thinking can be assessed in a variety of ways; however, the clearest model is to assess the
planning phase for any solution as this can highlight a weakness in sequence, selection, or iteration within
an algorithm. Errors in these areas will demonstrate a weakness in logic within the solution which will lead
to failures when programmed. Students can develop algorithms as electronic or analogue documents using
flow diagrams or pseudocode. Assessment of these artefacts will help to improve student’s success at the
development stages when learning to program.

Formative assessment
Every lesson includes formative assessment opportunities for teachers to use. These opportunities are
listed in the Medium-Term Plans and are included to ensure that misconceptions are recognised and
addressed if they occur. They vary from teacher observation or questioning, to marked activities.

These assessments are vital to ensure that teachers are adapting their teaching to suit the needs of the
pupils that they are working with. Any adaptation needs to be noted in the Medium-Term Plans.

The learning objectives are introduced in the slides or OneNote files at the beginning of every lesson. Every
lesson has a starter activity and a plenary that can be used as an opportunity for formative assessment.

Summative assessment

Every unit includes an optional summative assessment framework in the form of either a multiple-choice
quiz (MCQ) or a rubric. All units are designed to cover both skills and concepts from across the computing
national curriculum. Units that focus more on conceptual development include an MCQ. Units that focus
more on skills development end with a project and include a rubric. However, within the ‘Programming’
units, the assessment framework (MCQ or rubric) has been selected on a best-fit basis.

Multiple choice quiz (MCQ)

Each of the MCQ questions has been carefully chosen to represent learning that should have been
achieved within the unit. In writing the MCQs, we have followed the diagnostic assessment approach to
ensure that the assessment of the unit is useful to determine both how well pupils have understood the
content, and what pupils have misunderstood, if they have not achieved as expected.

Each MCQ includes an answer sheet that highlights the misconceptions that pupils may have if they have
chosen a wrong answer. This ensures that teachers know which areas to return to in later units.

 33

Rubrics

The rubric is a tool to help teachers assess project-based work. Each rubric covers the application of skills
that have been directly taught across the unit, and highlights to teachers whether the pupil is approaching
(WT), achieving (ARE), or exceeding the expectations (AGD) for their age group. It allows teachers to assess
projects that pupils have created, focussing on the appropriate application of computing skills and
concepts.

Pedagogically, we want to ensure that we are assessing pupils’ understanding of computing concepts and
skills, as opposed to their reading and writing skills. This has been carefully considered both in how MCQs
have been written (considerations such as the language used, the cultural experiences referenced, etc) and
in the skills expected to be demonstrated in the rubric.

Student Accountability

Students on GCSE courses will be provided with PLC’s which they must complete every time they complete
a quiz. This ensures they are tracking their own progress and can identify areas which need greater focus.
The PLC’s also provide an area for students to write a short reflection about their learning and to describe
their own next steps

 34

Progression Pathways KS3
PP Algorithms Programming & Development Data & Data Representation Hardware & Processing Communications & Networks Digital: Creativity & Citizens

 2

Understands that algorithms are
implemented on digital devices as programs.
Designs simple algorithms using loops and
selection i.e. if statements. Use logical
reasoning to predict outcomes. Detects and
correct errors i.e. debugging algorithms.

Uses arithmetic operators, if statements
and loops within programs. Use logical
reasoning to predict the behaviour or
programs. Detects and corrects simple
semantic errors i.e. debugging in programs

Recognises different types of data: text,
number. Appreciates that programs can
work with different types of data.
Recognises that data can be structured in
tables to make it useful.

Recognises that a range of digital
devices can be considered a computer.
Recognises and can use a range of input
and output devices. Understands how
programs specify the function of a
general-purpose computer.

Navigates the WWW can carry out simple
searches to collect digital content.
Demonstrates sue of computers safely and
responsibly, knowing a range of ways to
report unacceptable content and contact
when online.

Uses technology purposefully to organise digital
content. Uses a variety of software to assess,
manipulate and present digital content and
information. Shares their experiences of IT
beyond the classroom. Talks about their work
and makes improvements based on feedback.

3

Designs solutions (algorithms) and two-way
selection i.e. IF, THEN and ELSE statements.
Uses diagrams to express solutions. Uses
logical reasoning to predict outputs, showing
and awareness of inputs.

Creates programs that implement
algorithms to achieve given goals. Declares
and assigns variables. Uses post-tested loop
e.g. until and a sequence of selection
statements in programs, including an IF,
THEN and ELSE statement.

Understand the difference between data
and information. Knows why sorting data in
a flat file can improve searching for
information. Uses filters or can perform
single criteria searches.

Knows that computers collect data from
various input devices, including sensors
and applications. Understands the
difference between hardware and
application software, and their roles in a
computer system.

Understands the difference between the
internet and WWW. Shows an awareness
of and can use a range of internet services
e.g. VOIP. Recognises what is acceptable
and unacceptable behaviour when using
technologies and online services.

Collects and Creates digital content to achieve a
given goal through combining software
packages and internet services to communicate
with a wider audience. Makes appropriate
improvement to solutions based on feedback
and can comment on the success of the solution.

4

Shows an awareness of tasks best completed
by humans or computers. Designs solutions by
decomposing a problem and creates a sub-
solution for each of these parts
(decomposition). Recognises that different
solutions exist for the same problem.

Understands IF and IF, THEN and ELSE
statements. Uses a variable and relational
operator within a loop. Designs, writes and
debugs modular programs. Knows that a
procedure can be used to hide detail within
a sub-solution (procedural abstraction).

Performs more complex searches for
information e.g. using Boolean and
relational operators. Analyses and evaluates
data and information and recognises that
poor quality data needs leads to unreliable
results and inaccurate conclusions.

Understands why and when computers
are used. Understands the main
functions of the operating system.
Knows the difference between physical,
wireless and mi=mobile networks.

Understands how to effectively use
searching engines, and knows how search
results are selected, including that search
engines use web crawler programs.
Demonstrates responsible use of
technologies and online services and knows
a range of ways to report concerns.

Makes judgements about digital content when
evaluating and repurposing it for a given
audience. Understands the potential of IT for
collaboration when computers are networked.
Uses criteria to evaluate the quality of solutions,
can identify and make some refinements to the
solution.

5

Understands that iteration is the repetition of
a process such as a loop. Recognises that
different algorithms exist for the same
problem. Represents solutions using a
structured notation. Can identify similarities
and differences in situations using these to
solve problems (pattern recognition).

Understands that programming bridges the
gap between algorithmic solutions and
computers. Has practical experience of a
high-level language. Uses a range of
operators and expressions e.g. Boolean and
applies them in the context of program
using appropriate data types.

Knows that computers use binary to
represent data. Understands how bit
patterns represent numbers and images.
Understands the relationship between
binary and file size (uncompressed). Defines
data types: real numbers and Boolean.
Queries data on one table using a typical
query language.

Recognises and understands the
function of the main internal parts of
basic computer architecture.
Understands the concepts behind the
fetch- execute cycle. Knows that there is
a range of operating systems and
application software for some
hardware.

Understands how search engines rank
search results. Understands how to
construct static web pages using HTML and
CSS. Understands transmission between
digital computers over networks, including
the internet i.e. IP addresses and packet
switching.

Evaluates the appropriateness of digital devices,
internet services and application software to
achieve given goals. Recognises ethical issues
surrounding the application of IT beyond school.
Designs and uses criteria to critically evaluate
the quality of solutions in order to make
appropriate solutions.

6

Recognises that some problems share the
same characteristics and use the same
algorithm to solve both (generalisation).
Understands the notion of performance for
algorithms and appreciates that some
algorithms have different performance
characteristics.

Uses nested selection statements.
Appreciates the need for and writes custom
functions using parameters. Appropriately
uses procedures and functions. Understands
and uses negation with operators. Uses and
manipulates a one-dimensional data
structure. Detects and corrects syntactical
errors.

Understands how numbers, images, sounds
and character sets use the same bit
patterns. Understands the relationship
between resolution and colour depth,
including the effect on file size. Distinguishes
between data used in simple programs (a
variable) and the storage for that data.

Understand the Von Neumann
architecture in relation to the fetch-
decode-execute cycle, including how
data is stored in memory. Understands
the basic function and operation of
location addressable memory.

Knows the names of hardware e.g. hubs,
routers, switches, and the names of
protocols e.g. SMTP, iMAP, POP, FTP,
TCP/IP, associated with networking
computer systems. Uses technologies and
online services securely and knows how to
identify and report concerns.

Justifies uses multiple digital devices, internet
services and application software to achieve
given goals. Evaluates the validity of digital
content and assess the usability of design
features when developing content for a given
audience. Develops criteria to evaluate the
quality of solutions using feedback from several
sources to identify and make improvement.

7

Recognises that the design of an algorithm is
distinct from its expression. Evaluates the
effectiveness of algorithms and models for
similar problems. Recognises where
information can be filtered out in generalising
solutions (abstraction). Uses logical reasoning
to explain how an algorithm works.

Appreciates the effect of the scope of a
variable e.g. a local variable can’t be
accessed from outside its function.
Understands and applies parameter
passing. Understands the difference
between and uses both pre-tested (While)
and post tested loops (Until). Applies a
modular approach to error detection and
correction.

Knows the relationship between data
representation and data quality.
Understands the relationship between
binary and electrical circuits, including
Boolean logic. Understands how and why
values are data typed in many different
languages when manipulated within
programs.

Knows that processors have instruction
sets and that these relate to low-level
instructions carried out by a computer.

Knows the purpose of hardware and
protocols associated with networking
computer systems. Understands the client-
server model including how dynamic
webpages use server-side scripting and
that webservers process and store data.
Recognises that persistence of data on the
internet requires careful protection of
online identity and privacy.

Undertakes creative projects that collect,
analyse, and evaluate data to meet the needs of
a known user group. Considers the properties of
media when importing them into digital
artefacts, develops success criteria and Collects
user feedback in order to make appropriate
refinements.

 35

Progression Pathways KS4

Grade Algorithms Programming & Development Data & Data Representation Hardware & Processing Communications & Networks Digital: Creativity & Citizens

3

Designs solutions (algorithms) and two-way
selection i.e. IF, THEN and ELSE statements.
Uses diagrams to express solutions. Uses
logical reasoning to predict outputs,
showing and awareness of inputs.

Creates programs that implement algorithms
to achieve given goals. Declares and assigns
variables. Uses post-tested loop e.g. until and
a sequence of selection statements in
programs, including an IF, THEN and ELSE
statement.

Understand the difference between data
and information. Knows why sorting data in
a flat file can improve searching for
information. Uses filters or can perform
single criteria searches.

Knows that computers collect data
from various input devices, including
sensors and applications.
Understands the difference between
hardware and application software,
and their roles in a computer.

Understands the difference between the
internet and internet service e.g. WWW.
Shows an awareness of and can use a range
of internet services e.g. VOIP. Recognises
what is acceptable and unacceptable
behaviour when using technologies and online
services.

Collects and Creates digital content to achieve a
given goal through combining software
packages and internet services to communicate
with a wider audience. Makes appropriate
improvement to solutions based on feedback
and can comment on the success of the solution.

4

Shows an awareness of tasks best completed
by humans or computers. Designs solutions
by decomposing a problem and creates a
sub-solution for each of these parts
(decomposition). Recognises that different
solutions exist for the same problem.

Understands IF and IF, THEN and ELSE
statements. Uses a variable and relational
operator within a loop. Designs, writes and
debugs modular programs. Knows that a
procedure can be used to hide detail within a
sub-solution (procedural abstraction).

Performs more complex searches for
information e.g. using Boolean and
relational operators. Analyses and evaluates
data and information and recognises that
poor quality data needs lead to unreliable
results and inaccurate conclusions.

Understands why and when
computers are used. Understands the
main functions of the operating
system. Knows the difference
between physical, wireless and
mi=mobile networks.

Understands how to effectively use searching
engines, and knows how search results are
selected, including that search engines use
web crawler programs. Demonstrates
responsible use of technologies and online
services and knows a range of ways to report
concerns.

Makes judgements about digital content when
evaluating and repurposing it for a given
audience. Understands the potential of IT for
collaboration when computers are networked.
Uses criteria to evaluate the quality of solutions,
can identify and make some refinements to the
solution.

5

Understands that iteration is the repetition
of a process such as a loop. Recognises that
different algorithms exist for the same
problem. Represents solutions using a
structured notation. Can identify similarities
and differences in situations using these to
solve problems (pattern recognition).

Understands that programming bridges the
gap between algorithmic solutions and
computers. Has practical experience of a
high-level language, using standard libraries.
Uses a range of operators and expressions
e.g. Boolean and applies them in the context
of program using appropriate data types.

Knows that computers use binary to
represent data. Understands how bit
patterns represent numbers and images.
Understands the relationship between
binary and file size (uncompressed). Defines
data types: real numbers and Boolean.
Queries data on one table using a typical
query language.

Recognises and understands the
function of the main internal parts of
a computer architecture.
Understands the concepts behind the
fetch- execute cycle. Knows that
there is a range of operating systems
and application software for some
hardware.

Understands how search engines rank search
results. Understands how to construct static
web pages using HTML and CSS. Understands
transmission between digital computers over
networks, including the internet i.e. IP
addresses and packet switching.

Evaluates the appropriateness of digital devices,
internet services and application software to
achieve given goals. Recognises ethical issues
surrounding the application of IT beyond school.
Designs and uses criteria to critically evaluate
the quality of solutions in order to make
appropriate solutions.

6

Recognises that some problems share the
same characteristics and use the same
algorithm to solve both (generalisation).
Understands the notion of performance for
algorithms and appreciates that some
algorithms have different performance
characteristics.

Uses nested selection statements.
Appreciates the need for and writes custom
functions using parameters. Appropriately
uses procedures and functions. Understands
and uses negation with operators. Uses and
manipulates a one-dimensional data
structure. Detects and corrects syntactical
errors.

Understands how numbers, images, sounds
and character sets use the same bit
patterns. Understands the relationship
between resolution and colour depth,
including the effect on file size. Distinguishes
between data used in simple programs (a
variable) and the storage for that data.

Understand the Von Neumann
architecture in relation to the fetch-
decode-execute cycle, including how
data is stored in memory.
Understands the basic function and
operation of location addressable
memory.

Knows the names of hardware e.g. hubs,
routers, switches, and the names of protocols
e.g. SMTP, iMAP, POP, FTP, TCP/IP, associated
with networking computer systems. Uses
technologies and online services securely and
knows how to identify and report concerns.

Justifies uses multiple digital devices, internet
services and application software to achieve
given goals. Evaluates the validity of digital
content and the usability of design features
when developing content for a given audience.
Develops criteria to evaluate the quality of
solutions using feedback from several sources to
identify and improve.

7

Recognises that the design of an algorithm is
distinct from its expression. Evaluates the
effectiveness of algorithms and models for
similar problems. Recognises where
information can be filtered out (abstraction).
Uses logical reasoning to explain how an
algorithm works.

Appreciates the effect and scope of a variable
e.g. a local variable can’t be accessed from
outside its function. Understands and applies
parameter passing. Understands the
difference between and uses both pre-tested
(While) and post tested loops (Until). Applies
a modular approach to error detection and
correction.

Knows the relationship between data
representation and data quality.
Understands the relationship between
binary and electrical circuits, including
Boolean logic. Understands how and why
values are data typed in many different
languages when manipulated within
programs.

Knows that processors have
instruction sets and that these relate
to low-level instructions carried out
by a computer.

Knows the purpose of hardware and protocols
associated with networking. Understands the
client-server model including how dynamic
webpages use server-side scripting and that
webservers process and store data.
Recognises that persistence of data on the
internet requires careful protection of online
identity and privacy.

Undertakes creative projects that collect,
analyse, and evaluate data to meet the needs of
a known user group. Considers the properties of
media when importing them into digital
artefacts, develops success criteria and Collects
user feedback in order to make appropriate
refinements.

8

Designs a solution to a problem that
depends on solutions to smaller instances of
the same problem (recursion).Understands
that some problems cannot be solved
computationally.

Designs and writes nested modular programs
that enforce reusability utilising sub-routines
wherever possible.Understands the
difference between ‘While’ loop and ‘For’
loop, which uses a loop counter.
Understands and uses two-dimensional data
structures.

Performs operations using bit patterns e.g.
conversion between binary and
hexadecimal, binary subtraction etc. Can
explain the need for data compression.
Knows what a relational database is and
understands the benefits of storing data in
multiple tables.

Has practical experience of a small
(hypothetical) low level programming
language.
Understands and can explain
Moore’s Law. Understands and can
explain multitasking by computers.

Understands the hardware associated with
networking computer systems, including
WANs and LANs, understands their purpose
and how they work, including MAC addresses.

Understands the ethical issues surrounding the
application of information technology, and the
existence of legal frameworks governing its use
e.g. Data Protection Act, Computer Misuse Act,
Copyright etc.

Homework Policy

The Computing Department embrace homework as a useful tool for securing mastery of key skills and
knowledge and to develop students’ independent learning in preparation for revision and GCSE. All
students are encouraged to, and re-taught how to, revise in the lead up to testing weeks and mock weeks.

Years 7, 8 and 9

In years 7, 8 and 9, students are set homework weekly. This homework is carefully designed to:

• Prepare students for future learning, such as pre-reading,

• Secure and embed learning that has taken place in the classroom,

• Develop students’ ability to work independently,

• Allow students the opportunity to complete extended projects,

• Develop their cultural literacy

• Apply the skills learnt in the classroom to extended tasks, such as longer essay writing

• Prepare and revise for testing

Years 7 & 9
Every Monday Week A, students are set a multiple-choice quiz via Microsoft Forms, which will link to
current and prior learning. Week B homework is ‘For the love of’ which investigates wider aspects of
computing and helps students draw links between classwork and the real world.

Year 8
Every Monday Week B, students are set a multiple-choice quiz via Microsoft Forms, which will link to
current and prior learning. Week A homework is ‘For the love of’ which investigates wider aspects of
computing and helps students draw links between classwork and the real world.

‘For the love of’
Once completed, homework is celebrated, shared or used in class. Great examples of homework are
further celebrated by being displayed on walls and in assembly. Students learn, practise and revise key
spellings as part of their homework to support the accuracy of their written responses and to secure their
knowledge of key spelling rules.

Year 10 and 11

Every Monday Week A, students are set a multiple-choice quiz via Microsoft Forms, which will link to
current and prior learning. Week B homework is tailored by the individual class teacher to suit their class’s
particular needs. Students in years 10 and 11 are set weekly revision challenges to support their
understanding of the GCSE exam questions with a focus on extended writing. These include:

• Redrafting content produced in class in response to feedback

• Drafting and completing coursework or programming assignments

• Preparing for programming assessments

• Accessing content on GCSE Pod

• Completing learning cycles and quizzes on SENECA

• Reading critical theory linked to their GCSE texts

Students will complete homework in via MS Teams and OneNote so that this can be used in lessons and to
promote the use of homework as an ongoing learning tool to support what is happening in the classroom.

Impact of homework is reviewed half termly by the homework lead to ensure it is of a high quality, is
useful to the student and their learning, is valued and is being set consistently.

Period 6 Expectations

All teachers will run period 6 sessions for their KS4 classes, and invite KS3 students to period 6, on the
following afternoons:
Year 11: Monday
Year 10: Wednesday
Year 7-9: Thursday

Teachers are expected to analyse their own class data after each key assessment entry and use this to
inform the focus of their period 6 sessions and the students to be invited.

The year 11 students targeted for priority intervention must be targeted through period 6 sessions as well
as in-class intervention where appropriate. The intention of period 6 sessions is that small numbers of
students are targeted to ensure a tight focus on mastery of skills. Sessions should be structured to allow for
clear, measurable progress, with the first session requiring students to complete a pre-assessment task
(this may be the mock exam if students have recently completed one) and the final session requiring
students to complete a final assessment task. Both of these should be marked by the period 6 teacher to
provide them with a clear overview of student needs and to identify where progress has been made.

The use of Threshold Testing in year 11 will identify students requiring intervention and those not
achieving 65% in the assessment will be required to attend catch-up and resit the threshold test.

Students should be focused and on task during period 6 sessions, as they would be within a typical
Computing lesson. Teachers are encouraged to use the rewards and consequence system as they would in
an ordinary lesson. All teachers must update the period 6 register each afternoon so that the impact of
these sessions can be analysed.

Sessions may be delivered across mixed groups with individual teachers focusing on different skills for
mastery. This will be decided as data trends appear throughout the year.

Red Lines (these are likely to change in view of Great Learners and will be revised)

Red Lines are whole school minimum expectations to ensure quality teaching and learning consistently
take place. Do

Do Now Task: This is a task that takes place at the start of the lesson and is used to embed prior learning or
introduce new learning. For KS3, this may be recapping knowledge, retrieval practice, prediction for a piece
of code. For KS4, this consists of a low stakes quiz interleaving the skills and knowledge for GCSE. This may
be a question and answer-based quiz, a connections map, retrieval practice.

Directed Questioning: In all cases, students are required to respond formally during directed questioning,
wording their response precisely and with appropriate subject terminology. Teachers model this to
students, support students in refining their responses and insist on responses being repeated
appropriately.

Modelling: All assessment tasks are completed by the teacher, to the highest standard expected of the
class, prior to teaching. Models are used within the scheme of learning to exemplify expectations to
students. Live modelling is integral to the high-quality teaching and learning that takes place within the
department. In many cases this will be delivered using screen sharing with teachers modelling
metacognition, outcomes, processes and approaches to tasks, and deconstructing student and existing
responses.

Oral Rehearsal: Students are expected to discuss their responses to questions before they are shared as a
class to ensure responses are well-considered, developed and refined. Full sentences are expected with
technical vocabulary.

Take 5: In all lessons, students independently complete the ‘Summary/Questions’ box on OneNote and
complete a self-assessment. This may be to summarise learning, respond to key questions, ask their own
questions or to complete another plenary task to demonstrate their learning and future needs. Take 5 may
not necessarily take place at the end of the lesson, but at a convenient point to assess the learning so far.

Assessment for Learning (AFL): As part of the department assessment policy, AFL takes place within
lessons as part of in-flight marking and feedback. Students’ learning is regularly assessed through
questioning, summarising and ‘Take 5’ tasks, live marking and conversations with students. Screen sharing
is used to show student work in a live setting for teachers or students to exemplify effective features and
explore how to improve assignments. Whole class feedback is used to exemplify great examples to
students, highlight common errors and areas to improve, and inform next steps in teaching.

DIRT: students are expected to reflect on what they have done to improve their work and how. This can
also incorporate peer assessment and feedback.

Students Read Aloud: Students are expected to read aloud to the teacher, in groups or to the whole class.
Teachers use this as an opportunity to assess reading fluency.

Teachers Model Reading: Teachers model reading especially complex texts which students are expected to
follow. This ought to be followed up by Direct Questioning.

Vocabulary Glossary

Core

Keyword Definition

Systems Architecture

CPU Central Processing Unit. - The “brain” of the computer

CU Control Unit. - Part of the CPU that manages the functions of all other
parts of the CPU

Decoder Part of the CU which decodes the binary instructions fetched from
memory

RAM Random Access Memory - The main volatile memory into which
programs are loaded from the hard drive

MAR Memory Address Register - Small fast memory used to store the RAM
address of the next instruction

MDR Memory Data Register - Small, fast memory used to store the
information collected from the RAM before processing

PC Program Counter - Keeps track of the current instruction number of the
program

Accumulator Small, fast memory, used to keep track of the data currently being
processed

ALU Arithmetic and Logic Unit - Does the basic mathematics and
comparisons during processing

Bus A physical connection between two elements of a computer system
that allows the transfer of data.

Cache Incredibly fast, but very expensive volatile memory using in the CPU

Bridge (North / South) Junctions on a motherboard where the bus connections are controlled
and routed. Northbridge deals with core functions, whilst the
Southbridge deals with the peripherals, input and output devices and
Secondary Storage.

von Neumann Architecture The method used by all modern computers to allow the programming
of a machine to be changed depending on the required function.

Fetch / Decode / Execute Cycle Basis of the von Neumann architecture – the repeated process where
instructions are fetched from RAM, decoded into tasks and data, then
carried out.

Clock Speed The number of FDE cycles that a CPU can carry out per second.
Measured in Ghz.
(1 Ghz = 109cycles per second or 1,000,000,000hz)

Cores Some processors have multiple CPUs which can work in parallel,
sequentially or can multitask. Dual and Quad cores are common in
modern PCs

Machine Code A program, stored in binary, that the CPU undertakes the F-D-E cycle
on. All programs must be in machine code to work

Instruction A single line of machine code, containing the command and data
location on which it is to be executed. Stored in binary

Opcode The first part of the instruction, is the command

Operand The second part of the instruction is the data on which to carry out the
command. This may be actual data stored in binary form, or a memory
location reference of where to find the data

Memory

Volatile Memory which requires constant electrical charge. If the power is
turned off, then the data is lost

Non-volatile Memory which can retain its data when the power is turned off

RAM Random Access Memory

ROM Read-Only Memory

Cache Very fast memory, on, or very close to the CPU

Virtual Memory A section of the HDD which can be used as RAM for very memory
intensive processes

Flash Memory A type of dynamic (changeable) ROM

Boot Process The instructions needed to start the computer and to initialize the
operating system.

POST Power On Startup Test
A series of checks done on the hardware of the computer to ensure the
machine can run.

Storage

Secondary Storage Primary storage is RAM. Secondary storage refers to long term, non-
volatile data storage.

Non-volatile Memory which can retain its data when the power is turned off

Magnetic Data is stored by altering the magnetic charge (+ or -) to represent
binary information

Optical A reflective layer or dye is marked to either reflect or not reflect a laser
beam. The computer reads the reflections as binary data

Solid State Also known as Flash Memory, the data is stored by forcing (or flashing)
electrons through a barrier into a storage layer. Here it is read as binary
information

Capacity How much data will it need to hold?

Speed How quickly must the data be written / read?

Portability Does the storage device need to be transported?
If yes, then size, shape and weight are important. Will it require other
devices to be used (eg. An optical reader).

Durability How robust is the device? Can it be moved without fear of damage? Will
it be used in a difficult environment? Does it need to be single use or
rewritable?

Reliability Does it need to be used repeatedly without failing, or will it receive
minimal reuse? Will it need to store the information for long periods of
time?

Cost Needs to be compared with the above and considered.

Wired & Wireless Networks

Stand Alone A single machine, not connected to another

Network A collection of machines which can communicate with one another

Transparent The end-user has no need to know the specifics of a network’s
infrastructure

Node A device on a network (PC or other device)

Link The connections between nodes

LAN Local Area Network (Single location)

WAN Wide Area Network (Multiple connected locations)

VPN Virtual Private Network

UTP Unshielded Twisted Pair – a type of cable

Client The user machines on a network

Server The central ‘controller’ machine on a network, including main data
storage

P2P Peer-2-Peer. A network without a server.

WAP Wireless Access Point

NIC Network Interface Controller

Router Controls the sending of data around a network

Hub A central connection for a small network, which broadcasts all data to
all clients

Switch A smart hub for larger networks which only sends the data to the
intended client

Internet A worldwide collection of networks

DNS Domain Name Server

Hosting Storing a file on a web-server for access via the internet

Cloud A service which is stored remotely

Networks & Protocols

TCP/IP Transmission Control Protocol / Internet Protocol.
These are the standards that allows network nodes to communicate
with one another on the internet

WWW World Wide Web - Pages of content

email Electronic mail, sent through the internet

URL Unique Resource Location

Protocol The rules and standards that are agreed in order to make it possible for
different devices to talk to one another

IP Address Each node on a network is given a unique 32 bit address (4x8bits) for
example 192.168.0.1 There are 4 billion possible combinations.

DHCP Dynamic Host Configuration Protocol – this protocol allows the network
server to control the allocation of IP addresses

MAC Address Media Access Control

 Unique addresses hard coded into the network interface controller.
Gives the manufacturer, NIC type and unique identifying number. 48
bits displayed as Hex (eg 01-23-45-67-89-ab-cd-ef)

TCP/IP A set of protocols that governs the transfer of data over a network

HTTP Standards for writing webpages to display content for display

HTTPS Client-server protocol for requesting (client) and delivering (server)
resources, such as HTML, securely

FTP Used to directly send files from one node to another over the internet.
Commonly used for uploading files to webservers

POP Used by email clients to download email from the remote email server
and save it onto the users computer. More or less redundant now, and
has been replaced by IMAP

IMAP An alternative to POP, allowing more control such as the complete
control of remote mailboxes

SMTP An old standard for transmission of email. SMTP can only be used to
push mail to client machines, whilst both POP and IMAP ae used by
clients to retrieve mail.

Protocol The rules and standards that are agreed in order to make it possible for
different devices to talk to one another

Layering Rules organised into a distinct order in which they need to be applied

Interoperability The ability for different systems and software to communicate,
exchange data and use the information exchanged

Encapsulation Enclosing data inside another data structure to form a single
component

De-encapsulation Removing data from inside and encapsulated item.

Systems Security

Hacking Attempting to bypass a system’s security features to gain unauthorised
access to a computer

Malware Malware is malicious software, loaded onto a computer with the
intention to cause damage or to steal information. Viruses are a type of
malware

Phishing Phishing is a common way to try to steal information like passwords.
Emails are sent, requesting the user logs into a website, but the site is a
fake, and the users details are logged

Social engineering People are the weakest point of any system. If a hacker can convince a
user to give over their data, this is the easiest way into a secure system

Brute force attack Using and algorithm to try every possible combination of characters to
‘guess’ the users password.

Data interception Data interception, or Man in the Middle attacks are hacks that use
‘packet sniffer’ software to look at every piece of data being
transmitted in the local area to find ones that meet the hacker’s
criteria. Often done by creating ‘fake’ wireless networks to record users
details

SQL injection Using SQL statements to trick a database management system (DBMS)
into providing large amounts of data to the hacker

Denial of Service Attack Hackers flood a network with huge amounts of fake data and requests
in an attempt to overload the system so that it crashes

Penetration Testing Employing a white hat hacker to try to break into a system to test how
good the security is. Any problems in the security can then be fixed
before they become vulnerable to real attack

Network forensics Network procedures that capture, record and analyse all network
events to discover the source of security attacks

Network Policies Rules which govern how a network may be used – see over page

Anti-malware software Software which analyses files, network traffic and incoming data to look
for known malware such as viruses or worms. An infected file is
quarantined, and either cleaned or securely deleted to prevent further
infection. Needs updating very regularly to ensure that the newest
malware is being checked for

Firewall A firewall protects a system by checking all incoming and outgoing
network traffic is legitimate

User level access Limiting the access of a user by their requirements to carry out their
job. An admin will have more rights than a student, for example. Often
even admins do not give themselves full rights to prevent accidents and
will instead have a super-user account that will be used only for special
high level jobs.

encryption Encoding all data with a secure private, asymmetric key system, so that
if data is stolen, it cannot be read or used.

Virus A program designed to infect a computer, then copy itself. Requires human ‘help’
to spread; usually through infected software being installed or spread through
unsecure removable media such as usb-drives

Worm A self-replicating program, which can run itself allowing it to spread very quickly

Trojan Horse A program which disguises itself as legitimate software, and appears to perform
one task, but is actually performing another

Ransomware Ransomware secretly encodes a users data and files, then offers to un-encode the
files if a large amount of money is paid to the hacker

Rootkit A rootkit allows a hacker to gain full, and often repeated, control of a computer,
including the host operating system, which helps the hacker avoid detection.

Network Policies

Acceptable Use Governs the general use of the computer system and equipment by
employees. Usually limited to that which is required to carry out only
the tasks that a user is employed to undertake

Passwords Rules to ensure that passwords are strong enough to prevent guessing
or brute force attack - often requiring the use of upper- and lower-case
letters, numbers and special characters. Also, usually a minimum length
is required. Passwords usually have to be changed on a regular basis

Email Governs what may and may not be sent by email

Web Access The configuration of web browsers may limit the types and categories
of website that can be accessed

Mobile Use What devices are and are not allowed to be used

Remote Access Govern what can be accessed from outside the system, and what can
only be accessed onsite

Wireless Govern how wireless access points (WAPs) are secured, who has access,
and under what circumstances

Software Governs who can install software, and which users are able to use that
software. May have different levels of access once inside the software

Server Rules about what services are provided by the institution and who may
access data stored centrally and for what purposes

Back Up Back up policy determines how frequently backups are undertaken, and
what type of back up (full, incremental, differential). It will also state
where the backup media must be stored and for how long. Often a full
weekly back up is required to be stored in a fire proof box in an offsite
location

Incident Response Plan Details what to do if something goes wrong, or if an attack is
discovered.

Systems Software

Operating systems (OS) Collections of programs that tell the computer hardware what to do.

User interface The means of communication between the user and the computer.
These are typically either command line or GUI.

Command Line The simplest form of user interface where users type commands into a
prompt

Graphic User Interface (GUI) Most modern computers have a GUI, which uses icons to represent the
programs and files. The user runs the programs through a touchscreen
or mouse-controlled pointer

Voice Command Increasingly users can speak commands to devices such as Google
Home and Amazon’s Alexa

Memory management The OS controls available memory, moving programs to and from
secondary storage to RAM

Multitasking Often users have more than 1 program running at once. Each CPU core
can only carryout 1 task at a time, but the OS alternates between the
programs to make it appear that multiple tasks are running
simultaneously

Peripheral management Computers must communicate with a range of external devices such as
printers, monitors and scanners (peripherals). The OS uses driversto
correctly pass data to the device and ensure correct function.

Drivers A driver is a piece of software which provides communication between
the CPU and a peripherals device

User management Multiple users can have accounts on the same computer, each with
their own files, settings and applications, protected with passwords. The
OS will ensure that only users who are granted permissions can use files
or programs belonging to other users.

File management Computers store files and data in hierarchical folder systems. This is
efficient and allows for quick navigation

Utilities Utility software supports the OS by performing a limited and specific
task. They are used to manage specific actions of the system or
undertake maintenance operations.

Encryption software In order to keep data secure, especially against outside threats, data
must be encrypted. Encryption software uses complex algorithms to
encode data so it cannot be read without the private access keys.

Disk Defragmentation Over time, through multiple updates and saves, files will become split
up and distributed over the platters. It takes longer for the files to be
accessed, slowing the machine down. Defragmentation reorganises the
files’ parts to bring them together. See fig 1.

Data Compressions Allows files to be made smaller by removal of empty space or through
compression algorithms (lossy or lossless) – see KO2.6b

Back Up In case of hardware failure or other computer problems, data should be
copied to external media so that it can be restored if lost or damaged.

Antivirus Continually scans the system to find, quarantine, and clean any file
infected with viruses.

Anti-malware Continually scans to identify any malicious software from being
introduced to the system.

Ethical, Legal, Cultural and
Environmental

Ethical Relates to right and wrong but in a moral sense than a legal issue. For
example, there is nothing to stop you legally from using Facebook to
stalk an ex-partner, but whether it is right to do so, is an ethical issue

Legal There are certain laws set by government that control how computers
can be used – see box

Cultural These issues relate to society and how technology can affect religious,
or social ideas. If people spend all their time on their phones rather
than talking face to face, this is a cultural issue

Environmental How computing impacts on the global and local environments. This
might be waste production, or mining to gather resources needed to
make phones, or using renewable energy to charge phones, or recycling
projects. Companies want to be seen to be ‘green’.

Privacy Privacy is a very important issue. A person’s right to privacy is very
important and there is strong law, alongside ethical guidance that
govern how companies can use our data

Stakeholder Anyone that is impacted on, in any way, by a technology. They have a
vested interest

Open source Software that is created and shared with the source-code able to be
seen. Users are free to make alterations to the source-code to meet
their own needs, or to improve the system for everyone

Proprietary Software that is created but the source code is locked. This is often sold,
and the company wants to protect its intellectual copyright

Legislation Laws that relate to a certain area

Algorithms

Algorithm An abstracted program which completes a given task, whatever the data provided

Search Searching is looking through data, making comparisons with a search term, until
the algorithm either finds the data, or identifies that it is not present.

Sort Putting given sets of data into specified order – usually ascending (alphabetical) or
descending (reverse alphabetical)

Linear Search A type of search where the computer checks every variable, in order, until it finds
the search term. Potentially very slow.

Binary Search A search type based on repeatedly halving the searchable data, until the search
term is found

Bubble Sort A method of sorting data which looks at pairs of variable, and swaps them around
if out of order. This continues until there are no more swaps to be made

Merge Sort Splits the data into increasingly small segments, until single data points are
reached, then reassembles the data structure one item at a time.

Insertion Sort Checks through the data until finding the first incorrectly places item. The
algorithm then checks all the previous places to see where the data fits, before
inserting it into this slot.

Programming Techniques

Abstraction Abstraction is moving a problem out of the specific in order to create a general
solution that would work in similar scenarios. Ignoring the gritty details to focus
on the problem

Decomposition Breaking a problem down into smaller, computational solvable chunks

Pseudo Code A structured way of planning code, which is ‘computational’ in style (uses Boolean
logic, variables, comparisons and arithmetic for example) but is not tied to a strict
high-level language’s syntax

Flow Diagram A diagram made using specific shaped boxes, that mocks up the flow of a program
through various stages, processes and decisions.

Program Control Using Boolean logic to guide the computer through a program based on decisions

Comparison Operators The symbols used to look at a variable or piece of data in relation to is similarity to
another piece of data or variable

Arithmetic Operators The symbols used to show the mathematics to be carried out on a piece of data.

Robust Programs

Defensive design Planning a program from the very beginning to prevent accidental or
purposeful misuse

Input sanitization Removing erroneous data from a system prior to processing

Data validation Ensuring all data is in the correct format prior to processing

Contingency planning Having built in checks and outcomes based on what happens when
things go wrong

Anticipating misuse Building programs which do not allow a user to deliberately break the
system

Authentication Having different levels of user, and preventing everyday users from
being able to significantly change a system

Maintainability Building software which is modular to enable sections to be updated
and replaced without having to write the whole program again from
scratch

Code comments Annotating code so that the person maintaining or working with your
code in the future is able to understand your thought process

Indentation Making code more readable by laying it out in a manner that keeps
sections of code separate

Iterative testing Step by step testing to ensure that small sections of the code work,
before new parts are added and then retested. Important to allow
traceback to find what caused any errors

Terminal testing Significant testing done once a program is complete under a range of
conditions and on multiple hardware – often called Alpha Testing

Beta Testing Making a small release of the software to a group of tech-literate
enthusiasts to broaden the usage-testing and get lots of feedback prior
to full release.

syntax error An error in the typing of the code. Missing punctuation, spacing etc

Test data Data chosen to test the program. Testers use a specific range of data

Computational Logic

Logic A system designed to perform a specific task according to strict
principles.

Logic Gates The physical switches inside an electronic device which can perform the
calculations a computer needs to carry out on electronic signals

Truth Table A tabular representation of the possible inputs and outputs from a
given logic gate, or collection of gates

Boolean Mathematical TRUE or FALSE

Operator A mathematical symbol in computing

+ Addition [1+2=3]

- Subtraction [2-1=1]

/ Division [5 / 2=2.5]

* Multiplication [2 * 2 = 4]

^ Exponentiation, raising a number to the power of… [3^3 = 3 * 3 * 3 = 27
]

MOD Modulus division. To divide a number by another, but only return the
remainder [10 MOD 3 = 1]

DIV Integer Division. To divide a number by another, but only return the
number of full sets. [10 DIV 3 = 3]

Languages

Low Level Language A programming language which is closer to binary than English

High Level Language An abstracted programming language which is closer to English than
binary

Instruction Set Binary code which tells the computer hardware what to do – OpCode
and Operand

Machine Code 1 to 1 instruction coded in mnemonics (STO, ADD, MOD, DIV etc) which
must be converted to binary to run

Abstraction Removing a level of detail to allow focus on the problem solving rather
than the specifics. Python, and all other High-Level languages are
abstracted. You do not need to know the machine code to get
something to happen

Translator A utility to convert High Level Code into binary machine code so it can
be executed

Interpreter A utility which translates High Level code on a line-by-line basis and
executes the program as it goes in a special test environment

IDE Integrated Development Environment

Text Editor A place to type code, focused on the content of the file, not the look of
the file

Error Diagnostics To test a program and provide feedback to the coder so that errors can
be fixed

Run Time Environment Part of an IDE which allows a piece of code to be tested without
installation

Data Representation

Denary Base 10 number system. Uses digits 0,1,2,3,4,5,6,7,8,9

Binary Base 2 number system. Uses digits 0 and 1 only.

Hexadecimal (Hex) Base 16 number system. Uses characters 0-9 and A,B,C,D,E and F

BIT Contraction of BINARY DIGIT – a single value of 0 or 1

Binary Code Representation of values using multiple bits

Character Set A list of unique values, stored in binary, which represent the letters,
numbers and symbols a computer can show/use.

ASCII American Standard Code for Information Interchange.

 A character set which uses 7 bits to store 128 (27) characters

Extended ASCII A character set which uses 8 bits to store 256 (28) characters

UNICODE A characters set which uses 16 bits to store 65,535 characters (216)

INTEGER A whole number (value written to 0 decimal places)

FLOAT A decimal value

Conversion Moving a value from one data type/representation to another, for
example Binary to Hex

Exponent Mathematical term which tells you how many time to multiply a BASE
by itself.

Overflow Error Where the denary value cannot be represented with the given number
of bits.

Binary Shift The method for multiplying and dividing numbers in binary. Is not
necessarily mathematically correct

Most Significant Bit The left-most bit in a binary number – it has the highest value

Least Significant Bit The right-most bit in a binary number – it has the lowest possible value
= 0 or 1

Check Digits Bits used to ensure that the value sent digitally is not corrupted on
transfer

Lossy Compression Data is removed from the file to make it smaller. This data is lost and
cannot be regained. Suitable where the loss of data is likely not to be
noticed. Eg images

Lossless Compression No data is lost, but rather rearranged to ensure a perfect version of the
data can be returned. Used where exact reproduction is vital. Eg text
documents

JPEG / JPG Joint Photographic Experts Group

 Compression for images – lossy

GIF Graphics Interchange Format

 Lossless bitmapped image format for limited colours.

PDF Printable Document Format

 Open standard for reproducing text and graphic documents without
editing permissions – lossless

MPEG Moving Pictures Expert Group

MP3 Moving Pictures Expert Group Audio Layer 3

Programming

2D array A static data structure that holds data both horizontally and vertically.
The structure is fixed and each element has the same data type.

2D list A dynamic data structure that holds data both horizontally and
vertically. The structure can change during program execution and the
data types of the elements can be different.

Algorithm A series of instructions that end when the problem is solved.

Append Adding to an existing data structure.

Argument The values held in the brackets of a subroutine call. These are passed
into a subroutine via the parameters.

Arithmetic expression An expression that results in a numeric value.

Array A fixed (static) data structure that holds items of the same data type
under one name.

ASCII Acronym for American Standard Code for Information Interchange. It is
used to represent characters with a numerical value.

Assembler An assembler translates assembly language into machine code.

Assembly language A language that replaces machine code with mnemonics and operands
to make them easier to read / write.

Assignment Assigning a value to a variable.

Attribute Properties or characteristics of an entity. E.g. player name, player score

BIDMAS Acronym used to show the order of operations in an arithmetic
expression. Brackets, Indices, Division, Multiplication, Addition and
Subtraction. Add and subtract are interchangeable and should be read
from left to right.

Boolean data type A value that is either True or False.

Boolean expression An expression that evaluates as True or False. Also known as a logical
expression.

Boolean operator An operator used in a Boolean expression. For example AND, OR and
NOT. Also known as logical operators.

Boundary data Data that should be accepted by a program. It tests the data right at the
boundary of a range.

Caesar cipher Named after Julius Caesar. A Caesar cipher is one of the oldest and
simplest forms of encryption that involves shifting letters of the
alphabet by a defined amount to create an encrypted message.

Character A single character of string.

Comparison operators An operator that is used to compare one operand to another. For
example, < >.

Compiler A compiler creates an executable file for a program by translating a high
level language to machine readable code.

Concatenate When two or more strings are joined together.

Condition Used to control the flow of execution in a program. A condition
contains a logical expression.

Constant A constant is a value that cannot be changed during the execution of a
program.

Control flow The order in which instructions are executed in a program.

CSV Acronym for comma-separated values. It is a plaintext data file where
each value is separated by a single comma.

Custom built function A function that you have created yourself and imported into other
programs that you have created.

Data file A file that can be accessed and modified by a program.

Data pairing In a dictionary, a data pairing is when a key (the attribute identifier) is
paired with the data.

Data structure Used to store data in an organised and accessible way.

Data validation A check performed on data input to ensure that it can be accepted by
the program without causing an error.

Database A structured and organised method for storing data. A database holds
multiple records.

Decision symbol Used on a flowchart to represent a condition.

Declaration Declaring a variable as a specific data type.

Decomposition Breaking down a problem into smaller sub-problems to make the more
manageable.

Dictionary A data structure that involves creating data pairings that can be located
using a key.

Element A character in a string or an item in a sequence.

Entity An entity is a single object, place, person or thing. E.g. player

Erroneous data Data that should not be accepted by the program or it will cause an
error.

Error messages Used for finding errors in your program. They pinpoint lines of code
that contain errors and provide details about them.

Execute Carrying out the instructions for a computer program.

Execution Carrying out the instructions for a computer program.

Expression An expression is a collection of operands and operators that can be
evaluated.

Field Also known as an attribute. It is the properties or characteristics of an
entity.

Final testing Testing a program at the end of its creation.

Flowchart A visual representation of an algorithm or program.

For loop An iterative statement that will repeat for the length of a given
sequence.

Function A subroutine that returns a value.

Function call A statement used to execute a function.

Global variable A global variable can be accessed and modified from anywhere in the
program.

GUI Acronym for Graphical User Interface. It is an event driven program that
allows the user to interact with it in a variety of ways. For example,
buttons and icons.

guizero A third party library that can be imported into Python to create a GUI.

High level language A human readable language written in formal, structured English.

IDE Integrated development environment. This is a place to write programs
that provides support with debugging and diagnostics.

Import The keyword that enables a module to be brought into our programs.

Index The location of items or elements in a list, array or string.

Initialisation Assigning an initial value to a variable to let the compiler know that a
memory location is required.

Input() A function that prompts the user for input.

Integer A value that is a whole number.

Integer division In integer division there can be remainders because the resulting value
will be a whole number. For example 7 ÷ 3 will calculate as 2.

Interface A term used with subroutines to describe how it will interact with the
program. It refers to the subroutine identifier, parameters, order of
parameters and the return values.

Interpreter An interpreter translates and executes code line by line. It translates
the code into machine readable code.

Iteration Repetition of code blocks. For example, a while loop.

Iterative testing Testing a program during its creation.

Join method The join method takes a list and joins each value in that list into one
string.

Key In a dictionary data structure, a key is used to identify each attribute
held in the dictionary.

LED matrix A group of LEDs placed in a grid structure.

Library In Python, the library contains built-in modules that provide access to
system functionality such as file i/o.

List A dynamic data structure that holds items under one name. The items
can be of varying data types.

Logic error The program will run, but won’t do what the programmer expected.
These are tricky to spot as they are not picked up by the IDE.

Logical expression An expression that evaluates as either True or False.

Logical operator An operator used in a logical expression. For example AND, OR and
NOT.

Low level language This can be quickly executed by a computer. It is written in either
machine code or assembly.

Machine code A program written using 1s and 0s. A computer can execute this
directly.

Meaningful identifiers Naming a variable or data structure using a sensible name that can be
easily recognised and remembered.

Method A function that belongs to an object.

Mnemonic A code to help us remember something.

MOD / Modulo Calculates the remainder of a division. For example 7 MOD 3 will
calculate as 1.

Module In Python, a module is a file containing Python definitions and
statements. The functionality of these definitions and statements is
then available to be made use of.

Naming convention A unified standard for naming things in a chosen programming
language.

Naming conventions Following the guidance in the programming language documentation
about naming structures.

Nested selection A selection block placed within another selection block.

Normal data Data that should be accepted by a program. This is data that you would
expect a user to enter.

Operand A piece of data that can be changed

Operator A symbol or function that performs an operation. For example +.

Parameter Used in a subroutine to allow values to be passed into them.

Pixel A single element of an image on a computer screen.

Procedure A subroutine that executes a block of code when called. It does not
return a value.

Pseudo-random number This type of random number is generated using mathematical
algorithms which are computer-generated and therefore highly
predictable.

Pseudocode Informal steps for an algorithm using structured English.

Pythonista A programmer that uses Python as their desired programming
language.

Real / Float A decimal number.

Real division In real division there are no remainders because the resulting value can
be a decimal number. For example 7 ÷ 3 will be calculated as
2.3333333333333335.

Record A collection of attributes for a single entity.

Return value A value that is returned by a function.

Robustness A program is robust when it does not produce any errors during
execution.

Scope The scope of a variable is the section of the program where the variable
can be accessed and modified.

Selection Controlling the flow of execution in programs using if statements.

Sense HAT Hardware that attaches to the top of a Raspberry Pi computer and
allows you to write programs that collect data from sensors. The Sense
HAT also has an LED matrix for displaying output.

Sense HAT emulator A digital representation of the physical Sense HAT device.

Sensor A tool that collects data.

Sequence The sequence of a program is performed from top to bottom, executing
each line in turn.

Split method The split method takes a string and splits it when it finds a defined
character. The result will be held as a list.

Spreadsheet A document where data can be arranged in rows and columns. A
spreadsheet can be used to sort and perform calculations on data.

String A value that is text. This can include numbers but they will be read as
text.

String handling Performing operations on string.

Structure chart A top-down diagram used to design the structure of the subroutines
required for completing a program.

Structured programming A programming paradigm where sequence, selection, iteration and
subroutines are used to control the flow of execution. Each block of
code in a structured program has a single entry point and a single exit
point.

Subroutine A sequence of instructions to perform a specific task with an
identifiable name.

Substring Part of a string.

Success criteria A list of key elements required in a programming solution based on the
scenario or user requirements.

Syntax In programming, the language specific code that you write in has its
own syntax. The syntax is unique to that programming language.

Syntax The formal method used to structure code in a given programming
language.

Syntax error An error where the code has been structured incorrectly and the syntax
rules haven’t been followed.

Tabular format Displaying data in a grid of rows and columns.

Terminator Oval shapes used to show the start and end of a flowchart.

Text file A file stored on a computer that contains plain text.

Third party libraries Code that has not been written by the Python developer or you that
can be imported into your programs to save you from writing them
yourself if you don’t have the time or necessary skills.

Trace table An error checking method that steps through each line of code in a
program and records the state of the variables and conditions.

Translator This executes the programs that programmers write in high level
languages.

Traverse Move through a sequence.

True-random number This type of random number is generated using unpredictable physical
means such as atmospheric noise.

Truth table A table that lists the outputs of all possible input combinations.

Try and except A data validation check to see if the data entered can be accepted by
the program. If a defined error occurs the user will be prompted with a
warning.

Variable A value held under one name.

While loop A loop that will continue to iterate whilst its condition evaluates as
True.

XOR A Boolean / logical operator.

